
The SCREECH OWL reasoner
– Scalable approximate ABox reasoning with OWL∗

Pascal Hitzler and Denny Vrandečić
AIFB, Universität Karlsruhe, Germany

Abstract
We present a preliminary version of the approxi-
mate OWL reasoning system SCREECH. It builds
on the KAON2 system and performs OWL ABox
reasoning in an approximate manner. It trades
soundness of reasoning for efficiency, with result-
ing polynomial worst-case data complexity. It has
been developed for use in time-critical applications
where quick response time is more important than
a full guarantee of correctness of answers. The
theoretical background for the system is explained
in [Hitzler and Vrandečić, 2005] and is being pre-
sented at the conference.

1 The OWL scalability problem
Knowledge representation and reasoning on the Semantic
Web is done by means of ontologies. The W3C established
the Web Ontology Language OWL [W3C, 2004] as core stan-
dard. It comes in three flavours, as OWL Full, OWL DL and
OWL Lite, where OWL Full contains OWL DL, which in turn
contains OWL Lite. The latter two coincide semantically with
certain description logics and can thus be considered frag-
ments of first-order predicate logic.

OWL ontologies can be understood to consist of two parts,
one intensional, the other extensional. In description log-
ics terminology, the intensional part consists of a TBox and
an RBox, and contains knowledge about concepts (called
classes) and complex relations between them (called roles).
The extensional part consists of an ABox, and contains
knowledge about entities and how they relate to the classes
and roles from the intensional part. The Semantic Web en-
visions a distributed knowledge source, built from OWL on-
tologies and intertwining the knowledge like the Web inter-
connects websites today.

With an estimated 25 million active websites today and cor-
respondingly more webpages, it is apparent that reasoning on

∗The authors acknowledge support by the German Federal Min-
istry of Education and Research (BMBF) under the SmartWeb
project, and by the European Commission under contract IST-2003-
506826 SEKT and under the KnowledgeWeb Network of Excel-
lence. The expressed content is the view of the authors but not nec-
essarily the view of any of the projects as a whole.

the Semantic Web will have to deal with very large ABoxes.
Complexity of ABox reasoning — also called data complex-
ity — measures complexity in terms of ABox size only, while
considering the intensional part of the ontology to be of con-
stant size. For the different OWL variants, data complexity
is at least NP-hard, which indicates that it will not scale well
in general. Therefore, methods are sought to cope with large
ABoxes in an approximate manner. The idea is to use quick
heuristic reasoning when time constraints are more important
than the correctness of the answers. A typical use case is on-
line question answering, where it is usually more important
to quickly offer the user a set of possible answers instead of
letting him wait for a long time in order to receive precise re-
sponses. The system shown here can be part of a multi-tier
anytime system.

2 From OWL to datalog
The approach which we propose is based on the fact that
data complexity is polynomial for non-disjunctive datalog.
We utilise recent research results about the transformation
of OWL DL ontologies into disjunctive datalog, and perform
heuristic approximate reasoning by transforming the disjunc-
tive database into a non-disjunctive one.

The transformation is based on the fact that OWL DL
is a subset of first-order logic. OWL axioms can thus be
translated directly into logical formulas and transformed into
clausal form using any of the standard algorithms. The re-
sulting clauses can be represented as disjunctive datalog rules
which do not contain negation.

Note, however, that due to possible skolemization steps in
the clausal form translation, the resulting datalog rules may
contain function symbols. In general, datalog with function
symbols is undecidable, but since we obtain the datalog pro-
gram by a translation from OWL DL, which is decidable, in-
ferencing over the resulting program must be decidable. Stan-
dard datalog engines, however, do in general not terminate in
the presence of function symbols. To cope whith this prob-
lem, a sophisticated method has been presented in [Hustadt
et al., 2004] which allows to get rid of the function sym-
bols without loosing ABox consequences. As a result, we
obtain a function- and negation-free disjunctive datalog pro-
gram, which can be dealt with using standard techniques.

There is one other catch: The approach presented in [Hus-
tadt et al., 2004] does not allow to deal with nominals, i.e. it



supports only SHIQ(D) instead of SHOIN (D) (the lat-
ter is the description logic coinciding with OWL DL). We
remark that to date — and to the best of our knowledge —
no efficient reasoning algorithms for SHOIN (D) have been
implemented. We will return to a possible treatment of nom-
inals in our approach later.

3 Approximate SLD-Resolution
Having obtained datalog rules of the form

H1 ∨ · · · ∨Hm ← A1, . . . , Ak,

ABox reasoning is still NP-hard. For our approximate rea-
soning approach, we utilize the fact that when all rules are
non-disjunctive, i.e. when m = 1, then standard resolution
methods can be used which render the reasoning to be poly-
nomial with regard to the number of facts. Hence, we use a
modified notion of split programs [Sakama and Inoue, 1994].
Given the above rule, the derived split rules are defined as:

H1 ← A1, . . . , Ak . . . Hm ← A1, . . . , Ak.

For a given disjunctive program P , its split program P ′ is de-
fined as the collection of all split rules derived from rules in
P . Polynomial ABox reasoning can now be performed using
the split program and classic resolution techniques, e.g. SLD-
resolution as used in standard Prolog systems [Lloyd, 1988].
The combined reasoning method, which we call approxi-
mate SLD-resolution, is obviously complete but unsound,
and hence it is necessary to pursue the question of exactly
what notion of entailment underlies the approximate reason-
ing technique we propose. Space restrictions forbid us to go
into detail, so it shall suffice to say that approximate SLD-
resolution boils down to brave reasoning with well-supported
models, where the latter notion is a straightforward adaptation
of the notion of well-supported model from [Fages, 1994] to
the disjunctive case.

In order to be able to deal with all of OWL DL, we need
to add a well-known preprocessing step to get rid of nom-
inals. We can do this by Language Weakening as follows:
For every occurrence of {o1, . . . , on}, where n ∈ N and the
oi are abstract or concrete individuals, replace {o1, . . . , on}
by some new concept name D, and add ABox assertions
D(o1), . . . , D(on) to the knowledge base. Note that the
transformation just given does in general not yield a logically
equivalent knowledge base, because some information is lost
in the process.

Putting all the pieces together, the following steps describe
our approximate ABox reasoning for OWL DL.

1. Apply Language Weakening as just mentioned in order
to obtain a SHIQ(D) knowledge base.

2. Apply transformations as in Section 2 in order to obtain
a negation-free disjunctive datalog program.

3. Use approximate SLD-resolution for query-answering.

The first two steps can be considered to be preprocessing
steps for setting up the intensional part of the database. ABox
reasoning is then done in the last step. From our discus-
sions, we can conclude the following properties of approx-
imate ABox reasoning for SHIQ(D).

• It is complete with respect to first-order predicate logic
semantics.

• It is sound and complete with respect to brave reasoning
with well-supported models.

• Data complexity of our approach is polynomial.

4 SCREECH OWL
We have implemented the proposed approach as SCREECH1,
based on KAON22. It utilizes KAON2’s sophisticated trans-
lation algorithms from OWL DL into datalog, and returns the
corresponding split program which can be fed into any stan-
dard Prolog interpreter for ABox reasoning.

5 Conclusions
Our approach provides ABox reasoning with polynomial time
complexity. It is complete, but it is also unsound with respect
to first-order logic. However, the inference underlying our
approach can be characterized using standard methods from
the area of non-monotonic reasoning.

The checking whether a conjunctive query is a predicate
logic consequence of a (negation-free) disjunctive logic pro-
gram P amounts to checking whether the query is valid in all
minimal models of P , i.e. corresponds to cautious reason-
ing with minimal models. Along this insight, we foresee the
possibility to develop an algorithm which would first find a
brave answer of a query, and then substantiate this answer by
subsequent calculations. This and other refinements of our
approach are in development.

References
[Fages, 1994] François Fages. Consistency of Clark’s com-

pletion and existence of stable models. Journal of Methods
of Logic in Computer Science, 1:51–60, 1994.

[Hitzler and Vrandečić, 2005] Pascal Hitzler and Denny
Vrandečić. Resolution-based approximate reasoning for
OWL DL. In Y. Gil et al., editors, Proceedings of ISWC05,
volume 3729 of Lecture Notes in Computer Science, pages
383–397. Springer, Berlin, 2005.

[Hustadt et al., 2004] Ullrich Hustadt, Boris Motik, and Ul-
rike Sattler. Reasoning in description logics with a
concrete domain in the framework of resolution. In
R. López de Mántaras and L. Saitta, editors, Proceedings
of ECAI’2004, pages 353–357. IOS Press, 2004.

[Lloyd, 1988] John W. Lloyd. Foundations of Logic Pro-
gramming. Springer, Berlin, 1988.

[Sakama and Inoue, 1994] C. Sakama and K. Inoue. An al-
ternative approach to the semantics of disjunctive logic
programs and deductive databases. Journal of Automated
Reasoning, 13:145–172, 1994.

[W3C, 2004] W3C. Web Ontology Language (OWL).
http://www.w3.org/2004/OWL/, 2004.

1http://logic.aifb.uni-karlsruhe.de/screech
2http://kaon2.semanticweb.org



Demo
In this appendix we describe the implementation and the
demo of the approach covered in the main part of this poster
description.

Implementation
Screech is implemented and distributed as part of the
KAON2 OWL tools3. These are a set of tools exposing the
power of the KAON24 ontology management infrastructure
to the command line. The KAON2 OWL tools consist of
over a dozen of small tools, like count, that counts the oc-
currences of a certain ontology element within an ontology,
or filter, that filters out ontology elements of a specified
kind.

KAON2 and the KAON2 OWL tools are implemented in
Java 5 and thus require the Java run time environment of the
appropriate version.

The approximate reasoning approach described here makes
use of two of the KAON2 OWL tools, namely deo and
Screech itself. deo applies the preprocessing step of lan-
guage weakening on OWL ontologies as described in Section
3, thus removing all nominals.

After that, Screech is applied to convert the ontology
into a semantically equivalent disjunctive datalog program (a
step that can also be done seperately using the dlpconvert
OWL tool). The resulting program is then analysed and all
rules with disjunctive heads are replaced by the appropriate
new rules. The resulting split program is then serialised in
datalog or F-Logic syntax.

Example
We demonstrate our approach by translating an ontology frag-
ment. This is only to exemplify the main issues of the
Screech approach. Consider the following axiom:

beneluxian ≡ luxembourgian t dutch t belgian

Translating this into disjunctive datalog we would get the
following statements:

beneluxian(X) :- belgian(X).
beneluxian(X) :- dutch(X).
beneluxian(X) :- luxembourgian(X).
belgian(X), dutch(X), luxembourgian(X)

:- beneluxian(X).

Screech instead replaces the last rule by the following
set of rules:

belgian(X) :- beneluxian(X).
dutch(X) :- beneluxian(X).
luxembourgian(X) :- beneluxian(X).

Thus, our approach changes the ontology by treating the
disjunctions in the last line as conjunctions. This change af-
fects the soundness of the reasoning procedure. However,
usually most of the ABox consequences which can be de-
rived by approximate SLD-resolution are still correct as can
be seen in the following evaluation.

3http://owltools.ontoware.org
4http://kaon2.semanticweb.org

tDD tsplit Instances Class Name
11036 ms 6489 ms 154/154 Biological object
11026 ms 5959 ms 9/9 Specified set
11006 ms 6219 ms 9/13 Multiple
11015 ms 5898 ms 16/16 Probe structural. . .
11036 ms 7711 ms 4/4 Human red. . .
11055 ms 5949 ms 24/58 Biological object. . .

Table 1: Performance comparison for instance retrieval
using disjunctive datalog (tDD) vs. the corresponding split
program (tsplit), on the KAON2 datalog engine. Instances
indicates the number of instances retrieved using DD versus
SPLIT, e.g. class Multiple contained 9 individuals, while the
split program allowed to retrieve 13 (i.e. the 9 correct indi-
viduals plus 4 incorrect ones). The full name of the classes
in the last three rows are Probe structural part of heart,
Human red blood cell mature and Biologi-
cal object that has left right symmetry.

Evaluation
For our evaluation we have performed experiments with the
OWL DL version of the GALEN Upper Ontology,5 as it ap-
pears to be sufficiently natural and realistic. As it is a TBox
ontology only, we populated GALEN’s 175 classes randomly
with 500 individuals.6 GALEN does not contain nominals or
concrete domains. GALEN has 673 axioms (the population
added another 500). The TBox translation to disjunctive dat-
alog took about 2300 ms, after which we obtained 2687 dis-
junctive datalog rules containing 267 disjunctions within 133
rules. Among these were 152 integrity constraints (i.e. rules
with empty head), which we removed for our experiment as
they led to inconsistency of the database.7 After splitting dis-
junctive rules, we arrived at 2802 Horn rules.

We then randomly selected classes and queried for their
extension using the KAON2 datalog engine, both for pro-
cessing the disjunctive datalog program and for the split pro-
gram. Some of the typical results are listed in Table 1, which
indicates a significant speed-up of more than 40% on aver-
age, while the vast majority of the retrieved answers is cor-
rect. Note that we obtain significant speed-up although the
KAON2 datalog engine is not optimized for Horn programs,
but rather tuned to efficient performance on definite disjunc-
tive datalog.

Future work
For the future we plan to improve the system by enhanced
approximate reasoning algorithms. We also plan to do further
evaluation of our approach, and develop a method to evaluate
ontologies beforehand in order to estimate the benefit in terms
of speed-up as well as the costs in term of possible incorrect
answers of applying Screech on a specific ontology or even
query.

5http://www.cs.man.ac.uk/∼rector/ontologies/simple-top-bio/
6Using the pop KAON2 OWL tool.
7This is an expected effect. Removal of the integrity constraints

does not destroy completeness of the approximate reasoning proce-
dure.


