
CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler

CS 410/610, MTH 410/610
Theoretical Foundations of Computing

Fall Quarter 2010

Slides 1
Pascal Hitzler

Kno.e.sis Center
Wright State University, Dayton, OH

http://www.knoesis.org/pascal/

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 2

Today’s Session

1. Discussion: What is “computable?”
2. Uncomputable – an example
3. Lecture overview
4. This lecture in the context of others
5. Organizational matters

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 3

Which things can be computed?

Which things cannot be computed?

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 4

What exactly is “computation”?

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 5

Models of computation

• Generally, abstract from space/memory limitations
– Assume memory is “as large as needed”

• Ignore, how long a computation takes
– as long as it terminates in finite time.

• Often, use only numbers/integers or only (finite) strings as the
things which are computed/stored in memory.

• There exist many formal models of computation.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 6

Models of Computation

• Turing Machine (in this lecture – at the beginning)
• ¹-Recursive functions (in this lecture – towards the end)
• ¸-calculus (see functional programming)
• Unlimited Register Machine
• WHILE-language
• … many others …

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 7

Unlimited Register Machine (URM)

• Registers r1, r2, r3, …
holding non-negative integers

• Initialization: finite number of registers ≠ zero

• A program consists of a finite sequence of instructions.

• Available instructions:
– Zero Z(n): set register rn to 0
– Successor S(n): increase rn by 1
– Transfer T(m,n): copy rm to rn

– Jump J(m,n,p): If rm= rn, jump to instruction number p

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 8

WHILE-language

• Minimal programming language, essentially consisting of

– Elementary arithmetic +, -, *, /
– Boolean comparison of numbers: <, >, =, ·, ¸, ≠
– Logical AND, OR, NOT

– Assignment of values to variables

– WHILE loops as only control features

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 9

Are they different?

• Not really.

• All models with certain minimal capabilities have so far been
shown to be equivalent.

• This is actually quite remarkable!

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 10

Today’s Session

1. Discussion: What is “computable?”
2. Uncomputable – an example
3. Lecture overview
4. This lecture in the context of others
5. Organizational matters

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 11

Uncomputable example

• N: Natural numbers (non-negative integers): N = {0, 1, 2, 3, 4, …}

• P(N): set of all subsets of N
Examples:
– {0,1,2,3,4,…}
– {}
– {0,2,4,6,8,…}
– {2,3,267,1011}
– {0,1,2,3,5,8,13,21,34,…}
– {2,3,5,7,11,13,17,19,23,…}

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 12

Uncomputable example

• We say that an algorithm (in some model of computation)
computes a subset S of N if
– It outputs a stream of non-negative integers (strictly

increasing).
– It needs only finite time between two outputs.
– If does not skip any number in S.
– All output numbers are in S.
– If it terminates, then it has output all integers in S.

Question: Can every set in P(N) be computed?

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 13

Uncomputable example

• Every algorithm which computes a subset of N can be expressed
with a finite string.

• It is easy to define a strict order on the set of all algorithms.
– E.g. lexicographic order.
– E.g. convert them to bit strings and sort by binary number.

• Hence, we can assume that {A0,A1,A2,A3,…} is the set of all
algorithms computing subsets of N.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 14

Uncomputable example

Mark the output of each Ai:

0 1 2 3 4 5 6 7 8 …
A0 x x x x
A1 x x x x x
A2 x x x x x
A3 x x x
A4 x x x x x x
A5 x x x x
A6 x x x

…

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 15

Uncomputable example

Now make a new subset of N by “inverting” the diagonal:

Result: x x x
i.e. { 0, 5, 6, … }

0 1 2 3 4 5 6 7 8 …
A0 x x x x
A1 x x x x x
A2 x x x x x
A3 x x x
A4 x x x x x x
A5 x x x x
A6 x x x

… …

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 16

Uncomputable example

The resulting set is not computed by any Ai!

Result: x x x
i.e. { 0, 5, 6, … }

0 1 2 3 4 5 6 7 8 …
A0 x x x x
A1 x x x x x
A2 x x x x x
A3 x x x
A4 x x x x x x
A5 x x x x
A6 x x x

… …

A5 doesn’t compute it!

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 17

Uncomputable example

The resulting set is not computed by any Ai!

but we have all possible algorithms in the list!
Hence: we found a set which is not computable!

0 1 2 3 4 5 6 7 8 …
A0 x x x x
A1 x x x x x
A2 x x x x x
A3 x x x
A4 x x x x x x
A5 x x x x
A6 x x x

… …

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 18

Looking a bit deeper

• The set of all algorithms is countable.
(I.e., can be enumerated as A0, A1, A2, …)

• The set P(N) is uncountable.
(I.e., cannot be enumerated as S0, S1, S2, …)
– Essentially the same proof. With a slight twist.

• This proof technique is known as “diagonalization.”
– We will need the technique for the main result in this lecture.
– It is usually credited to Georg Cantor (1845–1918); at least he

was the first to publish the diagonalization proof that P(N) is
uncountable).

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 19

Exercise 1 (hand-in)

• Adjust the proof just given such that you prove the following:

The set of all subsets of N is uncountable.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 20

Today’s Session

1. Discussion: What is “computable?”
2. Uncomputable – an example
3. Lecture overview
4. This lecture in the context of others
5. Organizational matters

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 21

Lecture overview

• Model of computation: Turing Machines

• The Church-Turing Thesis
(“Turing Machines are universal computers.”)

• A famous uncomputable problem: The Halting problem
(“There is no algorithm which can check for all other algorithms
whether they will terminate”)

• Another model of computation: ¹-Recursive Functions

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 22

Today’s Session

1. Discussion: What is “computable?”
2. Uncomputable – an example
3. Lecture overview
4. This lecture in the context of others
5. Organizational matters

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 23

This lecture in the context of others

• Three parts to “Foundations of Computing”
– Formal Languages and Automata (Sudkamp Part II)
– This lecture: Computability Theory (Sudkamp Part III)
– Computational Complexity (Sudkamp Part IV)

• Key outcomes from this lecture
– Turing Machines, Church-Turing Thesis, Halting Problem
– Practice dealing with formal (mathematical) notions and

techniques
– Learning to be formally precise
– Understand the fundamental limitations of computing

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 24

The problem with abstraction

Is the following true?

No C are B.
All B are A.
Therefore, some A are not C.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 25

The problem with abstraction

Is the following true?

No flying things are penguins.
All penguins are birds.
Therefore, some birds are not fliers.

[Example taken from Newsweek August 16, 2010, page 24: “The Limits
of Reason” by Sharon Begley.]

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 26

Today’s Session

1. Discussion: What is “computable?”
2. Uncomputable – an example
3. Lecture overview
4. This lecture in the context of others
5. Organizational matters

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 27

Organizational Matters

• Office Hours: Thursdays 2-3, Joshi 389.
Email contact preferred.
No office hour on 9th of September!

• Textbook (required):
Thomas A. Sudkamp, Languages and Machines, Third Edition,
Addison Wesley, 2006.

• Grading:
Midterm exam: 30%
Final exam: 50%
Exercises: 20%
(I may adjust in your favor)

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 28

Organizational Matters

• We will frequently make exercise sessions.
You will get exercises, to be done at home. Some will be marked as
graded by me (hand-in exercises). They are all discussed afterwards
in class.
Each exercise counts 5 points.
An average of 4 points counts as 100% for the exercises.
Exercises are due one week after I pose them – at the beginning of
the class.

• Webpage/slides.
I prefer to use a public website:
http://knoesis.wright.edu/faculty/pascal/teaching/s10/complexity.html

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 29

Organizational Matters

• I will be absent
– Sept. 9th (substitute: Prof. TK Prasad)
– Sept. 21st and 23rd

– Nov. 9th (week before exams)
– How do we make up for this?

• Extra sessions on Fridays, 6pm-7:40pm
– September 17th

– October 1st

– October 8th

• Room to be determined.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 30

Course overview

Tentative
We cover most of chapters 8, 9, 11, 12, 13

• Schedule
– Week 1: Introduction; Turing Machines
– Week 2: Turing Machines continued

	CS 410/610, MTH 410/610 �Theoretical Foundations of Computing��Fall Quarter 2010���Slides 1
	Today’s Session		
	Slide Number 3
	Slide Number 4
	Models of computation
	Models of Computation	
	Unlimited Register Machine (URM)
	WHILE-language
	Are they different?
	Today’s Session		
	Uncomputable example
	Uncomputable example
	Uncomputable example
	Uncomputable example
	Uncomputable example
	Uncomputable example
	Uncomputable example
	Looking a bit deeper
	Exercise 1 (hand-in)	
	Today’s Session		
	Lecture overview
	Today’s Session		
	This lecture in the context of others
	The problem with abstraction	
	The problem with abstraction	
	Today’s Session		
	Organizational Matters
	Organizational Matters
	Organizational Matters
	Course overview

