
CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler

CS 410/610, MTH 410/610
Theoretical Foundations of Computing

Fall Quarter 2010

Slides 4
Pascal Hitzler

Kno.e.sis Center
Wright State University, Dayton, OH

http://www.knoesis.org/pascal/

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 2

TOC: Decidability

Chapter 11 of [Sudkamp 2006].

1. Decision Problems
2. Problem Reduction
3. The Church-Turing Thesis
4. A Universal Turing Machine

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 3

Decision problems

A decision problem is a set of related questions each of which has
a yes or no answer.

• Is the non-negative integer n a square number?
[One question for each n.]

• Given a fixed language L, is the string x in L?
[One question for each n.]

• Does the Turing Machine M halt on input x?
[One question for each pair (M,x).]

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 4

Decision problems

A decision problem is a set of related questions each of which has
a yes or no answer.

A decision problem P is decidable if there is an algorithm that, for
every question p2P, terminates and determines the appropriate
answer.

A decision problem P is semi-decidable (or, partially solvable) if
there is an algorithm that, for every question p2P for which the
answer is “yes”, terminates and determines the appropriate
answer.

However, we have not defined the notion of algorithm. – and we’re
not going to, as such.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 5

Effective procedure

An effective procedure for a decision problem satisfies the
following properties

• Complete: It produces the correct answer for each problem
instance. [Note: this implies termination of the procedure.]

• Mechanistic: It consists of a finite sequence of instructions, each
of which can be carried out without requiring insight, ingenuity,
or guesswork.

• Deterministic: When presented with identical input, it always
performs the same computation.

Note: If a decision problem P has an effective procedure, then P is
decidable.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 6

TMs and decision problems

• In the TM paradigm, effective procedures would be specified by
TMs which always terminate.

• If we drop the completeness requirement (i.e., termination), then
TMs are an appropriate paradigm. It is unproven (unprovable?) if
TMs are an exhaustive paradigm for algorithmization.

• To invoke TMs for decision problems, the latter must be
represented as input to TMs – and we will focus on language
accepting TMs.

I.e., we require a representation of the decision problem as a
language acceptance problem.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 7

Different representations

• Different representations of the same decision problem result in
different TMs for solving them.

• E.g. – determining whether a non-negative integer is even.

– Unary representation of numbers:

– Binary representation of numbers:

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 8

The membership problem

• The membership problem for (a language) L:

“Is the input string x in L?”

• The membership problem for L is
– decidable if and only if L is recursive.

[We say “L is decidable” in this case.]
– semi-decidable if and only if L is recursively enumerable.

[We say “L is semi-decidable” in this case.]

A language or decision problem is undecidable if it is not
decidable.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 9

A note on nondeterminism

The membership problem for L is decidable if and only if there
exists a nondeterministic TM M with L(M)=L, such that all
computations of M terminate.

Why does this hold?

Because we have shown earlier that in this case we can construct
an always terminating deterministic TM N with L(N)=L.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 10

TOC: Decidability

Chapter 11 of [Sudkamp 2006].

1. Decision Problems
2. Problem Reduction
3. The Church-Turing Thesis
4. A Universal Turing Machine

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 11

Reduction

Definition 4.1

Let L be a language over ∑1 and Q be a language over ∑2.

L is (many-to-one) reducible to Q
if there is a Turing computable function r: ∑1* ! ∑2*
such that w2 L if, and only if, r(w)2 Q.

Note: If L is reducible to Q, then
• if Q is decidable, so is L.
• if Q is semi-decidable, so is L.
• if L is undecidable, so is Q.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 12

Reducibility and Decidability

If Q is decidable, and L is reducible to Q, then L is decidable.

Proof: Since Q is decidable, there is an always terminating TM M
with L(M)=Q.

Since L is reducible to Q, there is a TM R computing a function r s.t.
w2L iff r(w)2Q.

The TM N resulting from the composition of R with M thus
computes, for each w, whether or not w\in L, i.e., L(N)=L.

N always terminates since R terminates (for valid input) and M
always terminates.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 13

Exercise 29 [hand-in]

Prove the following:

If Q is semi-decidable, and L is reducible to Q, then L is semi-
decidable.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 14

Exercise 30 [hand-in]

Prove the following:

If L is undecidable and reducible to Q, then Q is undecidable.

[Note: there is a two-line proof for this.]

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 15

Reduction example – Example 4.2

TM reducing L = {xiyizk|i¸0,k¸0} to Q = {aibi|i¸0}

• What exactly is xiyizk mapped to?
• What are the other strings mapped to?
• Why is this sufficient?

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 16

Exercise 31 [no hand-in]

Construct a TM which reduces {aibiai|i¸0} to {cidi|i¸0}.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 17

Example 4.3

We show that L = {uu | u=aibici for some i¸0} is decidable.

Proof:
From Example 1.7 we know that Q = {aibici | i¸0} is decidable.
It thus suffices to reduce L to Q. We do this as follows:

From Example 1.12 we know how to check if an input string w is of
the form uu (for some string u). Hence,

1. if w ≠ uu (for some u), then erase the tape and output a single a.
2. if w = uu (for some u), then the copy and the second u in the

input string are erased, leaving u in the input position.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 18

TOC: Decidability

Chapter 11 of [Sudkamp 2006].

1. Decision Problems
2. Problem Reduction
3. The Church-Turing Thesis
4. A Universal Turing Machine

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 19

The Church-Turing Thesis (CTT)

Intuitively: “Everything that is computable is computable by a TM.”

CTT for Decision Problems:
There is an effective procedure to solve a decision problem if,
and only if, there is a TM that halts for all input strings and
solves the problem.

CTT for Recognition Problems:
A decision problem P is semi-decidable if, and only if, there is a
TM that accepts precisely the instances of P whose answer is
yes.

CTT for Computable Functions:
A function f is effectively computable if, and only if, there is a TM
that computes f.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 20

Notes on the CTT

• It’s not a mathematical theorem, and has not been (cannot be)
formally proven.

• However, it could be disproved!

• We actually have already invoked the CTT frequently in this
lecture, namely whenever we refrained from giving a TM in detail,
but instead gave a high-level description of a TM – with the
understanding that a TM could be explicitly constructed in these
cases, if desired.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 21

TOC: Decidability

Chapter 11 of [Sudkamp 2006].

1. Decision Problems
2. Problem Reduction
3. The Church-Turing Thesis
4. A Universal Turing Machine

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 22

Universal TM

A universal TM simulates the computations of an arbitrary TM.
! think of the simulated TM as an algorithm specified by
software, while the universal TM is the analogy to hardware.

We focus on TMs which accept by halting.
We need to be able to give a TM as input to a computation, i.e., we

need to identify each TM M with a string R(M), the representation
of M.

Schematically:

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 23

Representation

We consider only TMs with ∑ = {0,1} and ¡ = {0,1,B}.
States are called {q0, …, qn} with q0 the start state.

A transition has the form ±(qi,x) = [qj,y,d]
where qi,qj2Q; x,y2¡, d2{L,R}.

We encode ±(qi,x) = [qj,y,d] as
en(qi)0en(x)0en(qj)0en(y)0en(d)

where en(0) = 1 en(1) = 11 en(B) = 111
en(q0) = 1 en(q1) = 11 … en(qn) = 1n+1

en(L) = 1 en(R) = 11

Two consecutive 0’s separate transitions.
The beginning and end of the representation have three 0’s.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 24

Example 4.4

M does not terminate on strings
starting with 0, and accepts
all others.

Encoded transitions:

R(M):

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 25

Determining whether a string is a TM

Given a string u2{0,1}*.

Check if u consists of
• a prefix 000,
• followed by a finite sequence of encoded transitions separated

by 00’s, all transitions being of the specified form,
• followed by 000.

If yes, then u is the representation of a TM M.

M is deterministic if the combination of the state and input symbol
in every encoded transition is distinct.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 26

A universal 3-tape deterministic TM U

Computation begins with input on tape 1. Idea:If the input has the
form R(M)w, then the computation of M is simulated on tape 3.

A computation of U does the following:
1. If input is not of the form R(M)w for a det. TM M, then U loops.
2. Write w on tape 3 from position 1. Reposition tape head on left.
3. “1”, encoding state q0, is written on tape 2.
4. Simulate transition on tape 3: Let x be the current symbol on

tape 3 and qi be the state encoded on tape 2.
a. Scan tape 1 for an applicable transition. If there is none, halt

and accept the input.
b. If applicable transition is found on tape 1, then

i. Put new state on tape 2
ii. Put output symbol on tape 3
iii. Move tape head on tape 3 as specified.

5. Computation continues with step 4

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 27

Theorem 4.5

The language

LH = {R(M)w | M halts with input w}

is recursively enumerable.

Proof idea?

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 28

Proof

The language LH = {R(M)w | M halts with input w}
is recursively enumerable.

Proof:
The universal machine U accepts strings of the form R(M)w, where

R(M) is the representation of a TM and M halts when run with
input w.

For all other strings, the computation of U does not terminate.
Thus, L(U)=LH.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 29

Example 4.5

The decision problem

Halts on n’th Transition
Input: TM M, string w, integer n
Output: yes, if the computation of M with input w performs exactly

n transitions before halting
no, otherwise

is decidable.

Proof idea?

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 30

Proof

Modify U to become U’, by adding a frouth tape to record the
number of transitions in the simulation of M.

Represent a problem instance as R(M)w0001n+1.
Computation of U’ on input u:
1. If input does not end with 0001n+1, U’ halts rejecting the input.
2. 1n is written on tape 4 (from pos. 1); 000n+1 is erased from the

end of the string on tape 1; head of tape 4 returns to left.
3. If string on tape 1 is not of the form R(M)w, U’ halts rejecting the

input.
4. w is copied to tape 3; the en(q0) is written on tape 2.
5. Now simulate M, using tape 4 as transition counter (move right).

– If M is found to terminate while a blank is read on tape 4, halt
and accept.

– If M terminates without a blank on tape 4, or if M would not
terminate but there is a blank read on tape 4, halt and reject.

	CS 410/610, MTH 410/610 �Theoretical Foundations of Computing��Fall Quarter 2010���Slides 4
	TOC: Decidability
	Decision problems
	Decision problems
	Effective procedure
	TMs and decision problems
	Different representations
	The membership problem
	A note on nondeterminism
	TOC: Decidability
	Reduction
	Reducibility and Decidability
	Exercise 29 [hand-in]
	Exercise 30 [hand-in]
	Reduction example – Example 4.2
	Exercise 31 [no hand-in]
	Example 4.3
	TOC: Decidability
	The Church-Turing Thesis (CTT)
	Notes on the CTT
	TOC: Decidability
	Universal TM
	Representation
	Example 4.4
	Determining whether a string is a TM
	A universal 3-tape deterministic TM U
	Theorem 4.5
	Proof
	Example 4.5
	Proof

