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The Halting Problem

We know:

The language LH = {R(M)w | M halts with input w} 
is recursively enumerable.

But is it recursive?

Differently put: Is the following problem decidable?

Given an arbitrary TM M with input alphabet ∑ and a string w2∑*, 
will the computation of M with input w halt?

This problem is called the Halting Problem (for Turing Machines).
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Undecidability of the Halting Problem

Theorem 5.1

The Halting Problem (for TMs) is undecidable.

Proof idea:

Proof by contradiction, using diagonalization. But the 
diagonalization construction is a bit more complicated than 
usual.  
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Proof

We use the universal TM approach from the previous chapter.

Assume there is a TM H which solves the Halting Problem.

We now use H to construct an “impossible” machine D. This needs 
a few steps.

The TM H’ does the same as H, except that it loops when H accepts. 
This is an easy modification of H.

loop
halt
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Proof

Use a TM COPY which copies a string (i.e. input u becomes output 
uu), together with H’ to construct a TM D:

Now consider a computation of D with input R(D):

Does D halt with input R(D)?
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Proof

Thus, we have constructed a TM D, which halts on some input 
w=R(D) if and only if it does not halt on this input. 

This is obviously nonsense. I.e. we have a contradiction in our 
assumptions.

Hence, we have to reject the initial assumption that there is a TM H 
which solves the Halting Problem.

This concludes the proof.
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A different perspective on the proof

Diagonalization: Make a table, rows and columns entries are (all) 
TMs over {0,1} in some sequence M1, M2, M3, …

Entries in the table:
Row i, column j: 1 if Mi halts when run with R(Mj)

0 if MI does not halt when run with R(Mj)

The TM D is constructed such that it inverts the diagonal, i.e. D 
cannot be found in the table.

However, the table contains all TMs – and we have a contradiction.
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Exercise 29 [no hand-in]

Show that the Halting Problem (for TMs) is semi-decidable.
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The language LH

Corollary 5.2
LH = {R(M)w | M halts with input w} is not recursive.

Corollary 5.3
The recursive languages are a proper subset of the recursively 

enumerable languages.

Corollary 5.4
The language  LH is not recursively enumerable.
[Proof in Exercise 31.]

Corollary 5.5
There are undecidable problems which are not semi-decidable.
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Exercise 30 [hand-in]

Let ∑ be an alphabet and L be a language over ∑. 
Then we define L = {w2∑* | w∉ L}.

Prove the following: 

If L and  L are recursively enumerable, then L is recursive.
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Exercise 31 [hand-in]

Prove Corollary 5.4
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Exercise 32 [no hand-in]

Formulate, in words, the decision problem captured 
in the language LH 
(which is undecidable but not semi-decidable). 
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Recall

Definition 4.1

Let L be a language over ∑1 and Q be a language over ∑2. 

L is (many-to-one) reducible to Q
if there is a Turing computable function r: ∑1* ! ∑2* 
such that w2 L if, and only if, r(w)2 Q.

Note: If L is reducible to Q, then
• if Q is decidable, so is L.
• if Q is semi-decidable, so is L.
• if L is undecidable, so is Q.
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Reduction revisited

We will often take a modified approach:

If we already know that a problem P is undecidable
and we want to show that a problem Q is undecidable

then:

we show that,
if Q were decidable
then P would also be decidable.

Essentially, this is a reduction approach – it’s just that the explicit 
form mentioned in Definition 4.1 is not explicitly provided.
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The Blank Tape Problem

Theorem 5.6

There is no algorithm that determines whether an arbitrary TM halts 
when a computation is initiated with a blank tape.

Proof idea?
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Proof

We reduce the Halting Problem to the Blank Tape Problem.

Assume there is a TM B which solves the Blank Tape Problem:

The reduction (by a TM S) is as follows.
• S takes input of the form R(M)w
• S outputs a machine M’ which does the following when run on 

an empty tape:
– M’ writes w on a blank tape and returns the tape head
– M’ simulates M (on the input w which is now on the tape).
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Proof

Thus, if the Blank Tape Problem were decidable (say, by a TM B), 
then the Halting Problem would be decidable:

On input R(M)w, first run S, then run B. 
If B accepts, then M halts on w.
If B rejects, then M does not halt on w.

Note: 
S always terminates by definition.
B always terminates by assumption.
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Note

The Blank Tape Problem is a subproblem of the Halting Problem, in 
the sense that it is obtained by fixing part of the input (namely 
the string w).

A subproblem of an undecidable problem may be decidable.
Example: Deciding, whether a particular TM halts on all inputs. 
[We’ve done this several times.]

A subproblem of a decidable problem, however, is necessarily also 
decidable.
[Because in this case you can reduce the subproblem to the 
decidable problem.]
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The Reenter Problem

Given M, w, does the TM M run on w reenter the start state?

We show this problem is undecidable by reduction of the Halting 
Problem.

Idea for the reduction?
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Proof

Let M,w be input instances for the Halting Problem. 
We construct M’ (which also runs on input w) which reenters its 

start state if, and only if, M halts when run with w.

We do this as follows:
• Add a new start state q0’ for M’ (to make sure we only enter it 

when desired). It gets the same transitions as q0.
• Add a transition to q0’ for every halting configuration of M.

I.e., 
• The only way to reenter q0’ is if M halts on w.
• Whenever M halts on w we will reenter q0’.
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The Halting On All Inputs Problem

Determine, whether an arbitrary TM halts for all input strings.

This problem is also undecidable.
We show this by reduction of the Halting Problem.

Idea for the reduction?
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Proof
Assume the TM A solves the Halting On All Inputs Problem:

The reduction is accomplished by a TM S:
1. S determines whether the input string has the desired format 

R(M)w. If not, erase the tape (leave it blank). [leads to reject]
2. On input R(M)w, construct encoding of a TM M’ that, when run 

on a string y,
– erases y from the tape
– writes w on the tape
– runs M on w

M’ effectively ignores the input.
M’ halts on any (on all) inputs if and only if M halts on input w.
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Are undecidable problems “freaks”?

Say, decision problems which ask about properties of a recursively 
enumerable language L(M) accepted by a TM M (where M is the 
input to the problem), such as the following – are they likely to 
be decidable or undecidable?

• Is ¸2 L(M)?
• Is L(M)=;?
• Does L(M) contain exactly 6 strings?
• Is L(M) = ∑*?

These rephrased – are the following languages recursive?
• L¸ = {R(M) | ¸2 L(M)}
• L; = {R(M) | L(M)=;}
• L6 = {R(M) | L(M) has exactly 6 elements}
• L∑∗ = {R(M) | L(M)=∑*}
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Properties of languages

A property P of recursively enumerable languages describes a 
condition that a recursively enumerable language may satisfy, 
such as the following.

• The language contains ¸.
• The language is the empty set.
• The language contains exactly 6 strings.

A property P of recursively enumerable languages is called trivial if 
there are no recursively enumerable languages that satisfy P or 
if every recursively enumerable language satisfies it.

A property which is not trivial is called nontrivial.
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Properties of languages

A property P of recursively enumerable languages is called trivial if 
there are no recursively enumerable languages that satisfy P or 
if every recursively enumerable language satisfies it. A property 
which is not trivial is called nontrivial.

The following are nontrivial properties:

• The language contains ¸.
• The language is the empty set.
• The language contains exactly 6 strings.
• The language contains all strings.
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Exercise 33 [no hand-in]

Show that the following property is non-trivial:

L contains at least one string of even length.
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Properties as languages

“L(M) has the property P” 

can always be rephrased as

“Is R(M) 2 LP?”

for a suitably chosen LP.

E.g. 
• The language L(M) contains ¸.
• Is R(M) 2 L¸?

( recall L¸ = {R(M) | ¸2 L(M)} )



CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 31

Rice’s Theorem

Theorem 5.7

If P is a nontrivial property of recursively enumerable languages, 
then LP is not recursive. 

Proof idea?



CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 32

Proof

Proof by reducing the Halting Problem to LP. 

Case 1: The empty language does not satisfy P.

Note there is at least one language L2 LP, and L ≠ ;.
Let ML be a TM that accepts L.        [Why does ML exist?]

Assume there is a TM MP that decides membership in LP.
We will now construct a solution to the Halting Problem.

Input: R(M)w
This is preprocessed into the encoding of a Machine M’.
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Proof

M’, when run with input y, does the following.
1. Write w to the right of y, producing ByBwB.
2. Run M on w.
3. If M halts when run with w, then run ML with input y.

The result of running M’ on y is exactly that of running ML on y, 
provided M halts when run on w.
In this case, L(M’) = L(ML) = L and L(M’) satisfies P.

M’ never halts on any input provided M does not halt on w.
In this case, L(M’) = ;, which does not satisfy P.

Thus, M’ accepts ; when M does not halt with input w,
and accepts L when M halts with w.

Thus, L(M’) satisfies P if, and only if, M halts when run with input w.
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Proof

Schematically:

i.e. we have a solution to the Halting Problem, which is impossible.
Thus, P is not decidable.

Case 2: P is satisfied by the empty language.
Then use the preceding argument to show that LP is not recursive.
By Exercise 34, LP is not recursive.

P
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Exercise 34 [hand-in]

Show that the following holds for all languages L:

If  L  is not recursive, then L is not recursive.
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Exercise 35 [no hand-in]

Give an example of a property of languages that is not satisfied by 
any recursively enumerable language.
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Exercise 36 [hand-in]

Is the following language recursive?
Is the following language recursively enumerable?

L = {ai | i is a prime number}

Prove your claims.
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Exercise 37 [hand-in]

Give two different proofs that the following language is not 
recursive:

L = {R(M)w | M accepts w}
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Semi-Thue Systems

• A type of grammar.
• Given an alphabet ∑.
• Define rewrite rules

u ! v
where u2∑+, v2∑*

• A rewrite rule replaces a substring u by a string v.
– E.g., the rewrite rule 

aaa ! bbbb
applied to the string ccaaac yields ccbbbbc

• The rewriting terminates if none of the rewrite rules is applicable.

• Given a Semi-Thue System S = (∑,P) – P is the set of rewrite 
rules of S – we write u )S v if, and only if, v can be obtained 
from u by exhaustive application of rules in S.
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The Word Problem for S-T-Systems

The Word Problem for Semi-Thue-Systems is the problem of 
determining, for an arbitrary Semi-Thue System S and strings 
u,v2∑*, whether v is derivable from u in S.

This is undecidable.

We will show this by reduction of the Halting Problem.

Proof idea?
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Simulation

M = (Q,∑,¡,±,q0,F) a det. TM.
Define S-T-System SM = (∑Μ, PM) with

∑Μ = Q[¡[ {[,],qf, qr, qL} and the following rules:
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Lemma 5.8 

Let w = [uqv] be a string with u,v2¡* and q2 Q[ {qf, qR, qL}.

i) There is at most one string z such that w )SM z.
ii) If there is such a z, then z also has the form [u’q’v’] with 

u’,v’2¡*, and q’2 Q[ {qf, qR, qL}.

Proof.
i) Determinism of M carries over to SM. 
ii) This follows easily from the form of the rules.
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Lemma 5.9

A deterministic TM M halts with input w if, and only if, 
[q0BwB] )SM [qf]

Proof.

Note that a computation of M that halts with input w produces a 
derivation

[q0BwB] )SM [uqRv]
which is then transformed to [qf].

Conversely, a derivation of SM to [qf] corresponds directly to a 
halting computation of M.
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Example 5.10

The following TM accepts 0*1.

Rules of the corresponding Semi-Thue-System:
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Exercise 38 [hand-in]

Trace 

a) a computation of M from Example 5.10 on input 001.
b) a derivation of the corresponding SM on the same input, in given 

in appropriate form.



CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 47

Results

Theorem 5.11
The Word Problem for Semi-Thue Systems is undecidable.

Proof.
By reduction of the Halting Problem, as just given.

Theorem 5.12
Let M be a deterministic TM that accepts a nonrecursive language. 

Then the Word Problem for SM is undecidable.

Proof.
Exercise 39 – more arguments than in the textbook, please, and you 

can use the referenced book-exercise only if you prove it as well.
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Exercise 39 [hand-in]

See previous slide.
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Dominoes

Given an alphabet ∑.
A domino is a pair d=(u,v) with u,v2∑*.

A Post correspondence system  (Pcs) consists of
• an alphabet ∑ and 
• a finite set of dominoes over ∑.

A solution to such a system is a sequence d1, …, dn of dominoes 
such that u1…un = v1…vn.

The Post correspondence problem (Pcp) is the problem of 
determining whether a Post correspondence problem has a 
solution.
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Example 5.11

With the domino types

a solution is given by 
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Example 5.12

The Pcs with domino types [ab,aba], [bba,aa], [aba,bab] has no 
solution.

why?

We must start with [ab,aba].
As next domino, it must be either [ab,aba] or [aba,bab]. But with 

[ab,aba] there is a mismatch in the fourth element of the string. 
So we continue with [aba,bab].

We are then forced to continue with [bba,aa], which also produces 
a mismatch in the seventh element of the string.

We exhausted all possibilities, hence there is no solution.
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Exercise 40 [no hand-in]

Show, that the PCS with domino types 
[b,ba], [aa,b], [bab,aa], [ab,ba]

has no solution.
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Undecidability Result

Theorem 5.13
The Pcp is undecidable.

Proof.
We show this by reduction of the word problem for Semi-Thue

Systems.

Given a S-T-S S=(∑,P) (∑={0,1}) and a pair of strings u,v2∑*, we 
construct a Pcs Cu,v that has a solution if, and only if, u )S v.
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Proof

Pcs alphabet: {0,0’,1,1’,(,),*,*’}
A string w consisting entirely of symbols with ’ is denoted w’.
Add to S the two redundant rules 0 ! 0 and 1 ! 1.

Dominoes:
[yi’, xi], [yi, xi’] for each xi! yi in S.
[  (u*, (  ], [  *, *’ ], [  *’, * ], [  ), *’v) ]
[ 0,0’ ], [ 0’,0 ], [ 1,1’ ], [ 1’,1 ]                                          (*)

we use an abbreviation:     [    w, w’     ] for any w2{0,1}* stands for 
the corresponding sequence of dominos from row (*).
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Proof

part 1: Assume u )S v. Then Cu,v has a solution. 

Note there is a derivation                                                of even length.

The i-th step of the derivation can be written 

where  ui is obtained from ui-1 by application of                           .

We now construct a solution to Cu,v which is going to be the string

( u0 * u1’ *’ u2 * u3’ *’ … * uk-1 *’ uk ).
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Proof

(   Solution: ( u0 * u1’ *’ u2 * u3’ *’ … * uk-1 *’ uk )    )

Start solution with  [  (u*, (  ].
Then match u at the bottom, in the form of

[  (u*, (  ] , [ p0’,p0 ], [ yj0’, xj0 ], [q0’, q0], [ *’, * ]
where the dominoes spelling p0 and q0 are composite ones. The 
domino [ yj0’, xj0 ] comes from the rule                         .

This process is repeated with the first elements, producing
( u0 * u1’ *’ u2 * on the top, and then continued for the full 
derivation, yielding
( u0 * u1’ *’ u2 * u3’ *’ … * uk-1 *’ uk ).

The sequence is completed with the domino [ ), *’v) ].
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Proof

part 2: Assume Cu,v has a solution. Then u )S v.

Note the solution must start with [ (u*,[ ) and must end with [ ),*’v) ].
Thus the solution string has the form ( u * w *’ v ). If w contains ), 

then  the shorter string ending with ) is also a solution – so 
assume that ) occurs only as the rightmost symbol in the solution.

The way the dominos are made, the solution defines a sequence of 
strings   ( u0 * u1’ *’ u2 * u3’ *’ … * uk-1 *’ uk ), and each ui+1 can be 
obtained from ui by a finite number of applications of rewrite 
rules. Thus, u )S v.

Part 1 and part 2 combined constitute a reduction of the word 
problem for S-T-Ss to the Pcp. The Pcp is thus undecidable.
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The Domino Problem

• Most prominently used undecidable problem for showing that 
certain Description Logics are undecidable.
– Thus related to Semantic Web research.

Context: See Pascal Hitzler, Markus Krötzsch, Sebastian 
Rudolph, Foundations of Semantic Web Technologies, CRC 
Press, 2010, http://www.semantic-web-book.org

• This is not in [Sudkamp 2006].

Source: Lecture by Franz Baader, Complexity and Logic, Winter 
Semester 2005/2006, TU Dresden, Germany
– through a manuscript on the lecture by Adila Alfa Krisnadhi

See e.g. Börger, Grädel, Gurevich, The Classical Decision 
Problem, Springer, 2001.

http://www.semantic-web-book.org/�
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Dominoes again

Note: This is a different domino setting than for the Pcp!

Dominoes are squares with colored sides with an orientation (they 
cannot be turned or rotated).

Question: given a finite set of domino types (unlimited supply 
each), can we tile a quarter plane such that touching sides 
always have the same color?

A domino system D = (S,H,V) consists of
• a finite set of domino types S
• a horizontal compatibility relation H v S £ S
• a vertical compatibility relation V v S £ S
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Dominoes again

A domino system D = (S,H,V) consists of
• a finite set of domino types S
• a horizontal compatibility relation H v S £ S
• a vertical compatibility relation V v S £ S

A solution (tiling) of a domino system D=(S,H,V) is a mapping 
T: N £ N→ D (where N are the non-negative integers) such that 

• if T(x,y)=d and T(x+1,y)=d’, then (d,d’)2 H
• if T(x,y) = d and T(x,y+1) = d’, then (d,d’)2 V
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The Domino Problem

Theorem 5.14  (The Domino Problem)

The following problem is, in general, undecidable.

Given: a domino system D=(S,H,V) and d02 S
Question: Does D have a solution T with T(0,0)=d0?

Proof: By reduction of the Halting Problem.

Given a TM M and a word w
we construct a domino system D=(S,H,V) and d02 S s.t. M halts on 

w if, and only if, D does not have a solution T with T(0,0)=d0.



CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 64

Proof

Idea: tiling represents space-time 
diagram of a computation of M.

Domino types:

for all q2 Q and a2¡

input encoding
(q_0 =)
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Proof

The only way for the dominoes to fit together is by each row 
encoding a current configuration (tape + tape head + state) of the 
TM during a computation.

Moving up one row corresponds exactly to the application of one 
(applicable) transition.

The quarter plane can be filled entirely if, and only if, the 
computation does not terminate.

Thus, the computation terminates if, and only if, the Domino system 
does not have a solution.
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Exercise 41 [no hand-in]

Does the following Domino system have a solution? (Pick any 
starting domino.)
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What’s next

Chapter 13 of [Sudkamp 2006]

¹-recursive functions

as another paradigm for computation.
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