
Spring 2016 – CS 7220 – Pascal Hitzler

CS 7220 – Computational Complexity and
Algorithm Analysis

Spring 2016

Section 7: Computability – Part I
Introduction

Pascal Hitzler
Data Semantics Laboratory

Wright State University, Dayton, OH
http://www.pascal-Hitzler.de

Spring 2016 – CS 7220 – Pascal Hitzler 2

Models of computation

• Generally, abstract from space/memory limitations
– Assume memory is “as large as needed”

• Ignore, how long a computation takes
– as long as it terminates in finite time.

• Often, use only numbers/integers or only (finite) strings as the
things which are computed/stored in memory.

• There exist many formal models of computation.

Spring 2016 – CS 7220 – Pascal Hitzler 3

Models of Computation

• Turing Machine (in this lecture – at the beginning)
• μ-Recursive functions (in this lecture – towards the end)
• λ-calculus (see functional programming)
• Unlimited Register Machine
• WHILE-language
• … many others …

Spring 2016 – CS 7220 – Pascal Hitzler 4

Unlimited Register Machine
(URM)

• Registers r1, r2, r3, …
holding non-negative integers

• Initialization: finite number of registers ≠ zero

• A program consists of a finite sequence of instructions.

• Available instructions:
– Zero Z(n): set register rn to 0
– Successor S(n): increase rn by 1
– Transfer T(m,n): copy rm to rn

– Jump J(m,n,p): If rm= rn, jump to instruction number p

Spring 2016 – CS 7220 – Pascal Hitzler 5

WHILE-language

• Minimal programming language, essentially consisting of

– Elementary arithmetic +, -, *, /
– Boolean comparison of numbers: <, >, =, , , ≠
– Logical AND, OR, NOT

– Assignment of values to variables

– WHILE loops as only control features

Spring 2016 – CS 7220 – Pascal Hitzler 6

Are they different?

• Not really.

• All models with certain minimal capabilities have so far been
shown to be equivalent.

• This is actually quite remarkable!

Spring 2016 – CS 7220 – Pascal Hitzler 7

Uncomputable example

• N: Natural numbers (non-negative integers): N = {0, 1, 2, 3, 4, …}

• P(N): set of all subsets of N
Examples:
– {0,1,2,3,4,…}
– {}
– {0,2,4,6,8,…}
– {2,3,267,1011}
– {0,1,2,3,5,8,13,21,34,…}
– {2,3,5,7,11,13,17,19,23,…}

Spring 2016 – CS 7220 – Pascal Hitzler 8

Uncomputable example

• We say that an algorithm (in some model of computation)
computes a subset S of N if
– It outputs a stream of non-negative integers (strictly

increasing).
– It needs only finite time between two outputs.
– If does not skip any number in S.
– All output numbers are in S.
– If it terminates, then it has output all integers in S.

Question: Can every set in P(N) be computed?

Spring 2016 – CS 7220 – Pascal Hitzler 9

Uncomputable example

• Every algorithm which computes a subset of N can be expressed
with a finite string.

• It is easy to define a strict order on the set of all algorithms.
– E.g. lexicographic order.
– E.g. convert them to bit strings and sort by binary number.

• Hence, we can assume that {A0,A1,A2,A3,…} is the set of all
algorithms computing subsets of N.

Spring 2016 – CS 7220 – Pascal Hitzler 10

Uncomputable example

Mark the output of each Ai:

0 1 2 3 4 5 6 7 8 …
A0 x x x x
A1 x x x x x
A2 x x x x x
A3 x x x
A4 x x x x x x
A5 x x x x
A6 x x x

…

Spring 2016 – CS 7220 – Pascal Hitzler 11

Uncomputable example

Now make a new subset of N by “inverting” the diagonal:

Result: x x x
i.e. { 0, 5, 6, … }

0 1 2 3 4 5 6 7 8 …
A0 x x x x
A1 x x x x x
A2 x x x x x
A3 x x x
A4 x x x x x x
A5 x x x x
A6 x x x

… …

Spring 2016 – CS 7220 – Pascal Hitzler 12

Uncomputable example

The resulting set is not computed by any Ai!

Result: x x x
i.e. { 0, 5, 6, … }

0 1 2 3 4 5 6 7 8 …
A0 x x x x
A1 x x x x x
A2 x x x x x
A3 x x x
A4 x x x x x x
A5 x x x x
A6 x x x

… …

A5 doesn’t compute it!

Spring 2016 – CS 7220 – Pascal Hitzler 13

Uncomputable example

The resulting set is not computed by any Ai!

but we have all possible algorithms in the list!
Hence: we found a set which is not computable!

0 1 2 3 4 5 6 7 8 …
A0 x x x x
A1 x x x x x
A2 x x x x x
A3 x x x
A4 x x x x x x
A5 x x x x
A6 x x x

… …

Spring 2016 – CS 7220 – Pascal Hitzler 14

Looking a bit deeper

• The set of all algorithms is countable.
(I.e., can be enumerated as A0, A1, A2, …)

• The set P(N) is uncountable.
(I.e., cannot be enumerated as S0, S1, S2, …)
– Essentially the same proof. With a slight twist.

• This proof technique is known as “diagonalization.”
– We will need the technique for the main result in this lecture.
– It is usually credited to Georg Cantor (1845–1918); at least he

was the first to publish the diagonalization proof that P(N) is
uncountable).

Spring 2016 – CS 7220 – Pascal Hitzler 15

Exercise C1

• Adjust the proof just given such that you prove the following:

The set of real numbers is uncountable.

Spring 2016 – CS 7220 – Pascal Hitzler 16

Exercise C2 (hand-in)

Show that there are languages which are not recursively
enumerable.

Hint: Use diagonalization. It is possible to adjust the proof given
earlier, that not all sets of non-negative integers can be
computed. You do not need to spell out all details, but the
argument must be convincing.

