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Abstract
The question how knowledge can be represented by means of logic programs

with negation has been a driving force for the field of non-monotonic reason-
ing. Implemented systems, known as answer set programming systems, have
emerged recently and are currently being used in various application domains
like the semantic web.

Intuitively, logic programs are being used for encoding commonsense reson-
ing, in particular the phenomenon that human reasoning tends to ”jump to
conclusions” under incomplete knowledge. Formally, this kind of reaoning is
described by interpreting the first-order syntax of logic programs in a more
sophisticated way. This, in turn, is most easily done by means of fixed points
of semantic operators.

The study of different semantic operators and their relationships gives rise to
a rich theory. In this lecture, we will undertake a thorough formal study of these
issues as a foundation for the study of advanced topics in theoretical or applied
non-mononotonic reasoning. Particular emphasis will be on basic paradigms
and on the supported, Kripke-Kleene, stable, and well-founded semantics for
logic programs and their rich relationships.
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1 Introduction

First: Organization. Meet 16:00 to 19:20 on the following Fridays
October 22nd, 2004
November 5th, 2004
November 12th, 2004
December 10th, 2004
January 7th, 2005
January 21st, 2005
January 28th, 2005
February 4th, 2005 (only 16:00 to 17:30)

Exams: February 11th, 14:00 to 17:00

Modules: KRAI, TCSL

Content: ASP, LP (semantic foundations)

1. Definite Programs (least model semantics)

2. normal programs (classical + default negation, stable models)

3. three-valued semantics for progs with default negation (e.g. well-founded se-
mantics

In particular: Relations between these different semantics!

Semantics: Wikipedia

In general, semantics (from the Greek semantikos, or ”significant
meaning,” derived from sema, sign) is the study of meaning, in some
sense of that term. Semantics is often opposed to syntax, in which case
the former pertains to what something means while the latter pertains
to the formal structure/patterns in which something is expressed (e.g.
written or spoken).

Different semantics: declarative, procedural (in LP: via algorithm. Elsewhere: op-
erational), denotational, operational (in LP: via operators. Elsewhere: same as pro-
cedural), fixed-point, etc.

We focus here on declarative and fixed-point semantics for logic programs (with
negation). An example for the denotational approach is the following from [Hit97]

PROGRAM factorial(input,output);

CONST m=maxint;

TYPE natural = 0..m;
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VAR n: natural;

FUNCTION f(n:natural):natural;

BEGIN

IF n=0 THEN f:=1

ELSE f:=n*f(n-1);

END;

BEGIN

read(n);

write(n,’ Fakultaet ist ’,f(n));

END.

As a recursive function:

fact : N −→ N : fact(n) :=

{
1 for n = 0

n · fact(n− 1) for n ≥ 1.

Now convert this into a functional of partial funcions on N, as follows.

Fact : [N→ N] −→ [N→ N] : Fact(h) :=

(
n 7→

{
1 for n = 0

n · h(n− 1) for n ≥ 1

)
.

Here, [N→ N] is the set of all partial functions on N.

Exercise 1
Prove that fact is a fixed point of Fact, i.e. show that Fact(fact) = fact.

Exercise 1 shows that the meaning (i.e. the semantics) of fact is encoded as fixed
point of Fact. But how to obtain this fixed point (i.e. meaning)?

Identify each element of [N→ N] with its graph. We furthermore define recursively
Fact ↑ 0 = {(0, 0)} and Fact ↑ (n + 1) = Fact(Fact ↑ n). Writing Fn for Fact ↑ n, we
can compute

F0 := ∅
F1 := Fact(F0) = {(0, 1)}
F2 := Fact(F1) = {(0, 1), (1, 1)}
F3 := Fact(F2) = {(0, 1), (1, 1), (2, 2)}
F4 := Fact(F3) = {(0, 1), (1, 1), (2, 2), (3, 6)}

. . . .

We can now order [N→ N] via set-inclusion of the graphs, and note that Fact ↑ n ⊆
Fact ↑ (n + 1) for all n ∈ N. We define

Fact ↑ ω =
∞⋃

n=1

Fact ↑ n.
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Obviously, Fact ↑ ω = fact, and fact is a fixed point of Fact. Indeed (as we will see
later), it is its least fixed point.

So the meaning of the factorial programme fact can be described as the least fixed
point of the associated mapping Fact.

Exercise 2 ([SHLG94])
Write a naive imperative recursive algorithm for computing the greatest common di-
visor of any given pair of natural numbers. Write the same algorithm as a recursive
function gcd. Convert gcd into a functional GCD as above, such that its least fixed
point is gcd. Give GCD ↑ n for n = 0, 1, 2.

This approach works very well for functional programming languages, and to a
certain extent for imperative paradigms. For logic programs, the situation is much
more difficult when negation is present. In general, for programs with negation least
fixed points describing the semantics do not exist.

This observation is the starting point for a rich theory on the declarative reading
of negation in logic programming.

2 Two-valued semantics for logic programs

Standard general references for logic programming: [Llo88, Apt97].

2.1 Definition A (normal) logic program is a finite set of (universally quantified)
clauses of the form ∀(A ← A1 ∧ · · · ∧ An ∧ ¬B1 ∧ · · · ∧ ¬Bm), commonly written
as A ← A1, . . . , An,¬B1, . . . ,¬Bm, where A, Ai, and Bj, for i = 1, . . . , n and j =
1, . . . ,m, are atoms over some given first order language. A is called the head of
the clause, while the remaining atoms make up the body of the clause. We allow a
body, i.e. a conjunction, to be empty, in which case it always evaluates to true. A
clause with empty body is called a unit clause or a fact. A clause is called definite,
if it contains no negation symbol. A program is called definite if it consists only of
definite clauses. We will usually denote atoms with A or B, and literals, which may
be atoms or negated atoms, by L or K.

Given a logic program P , we can extract from it the components of a first order
language. The corresponding set of ground atoms, i.e. the Herbrand base of the pro-
gram, will be denoted by BP . For a subset I ⊆ BP , we set ¬I = {¬A | A ∈ BP}. The
set of all ground instances of P with respect to BP will be denoted by ground(P ).

Unless otherwise mentioned, P will in the following denote some arbitrary normal
logic program.

2.2 Example For the program Even consisting of the two clauses

even(0)←
even(s(X))← ¬even(X),

the underlying language has constants {0}, function symbols {s} and predicate sym-
bols {even}. We have BEven = {even(sn(0)) | n ∈ N} and ground(Even) consists of
the set {even(0)←} ∪ {even (sn+1(0))← ¬even (sn(0)) | n ∈ N}.
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2.3 Program (Tweety1) Let Tweety1 be the program consisting of the following
clauses.

penguin(tweety)←
bird(bob)←
bird(X)← penguin(X)

flies(X)← bird(X),¬penguin(X)

Tweety1 obviously represents the following knowledge: tweety is a penguin, bob is a
bird, all penguins are birds, and every bird which is not a penguin can fly.

Exercise 3
Use your favorite Prolog-Interpreter (e.g. SWI-Prolog) to solve the 8-queens problem
without using any built-ins. The 8-queens problem is as follows. Place 8 queens on 8
of the 64 squares of a chessboard, such that no two queens share a row, a column,
or a diagonal. Under a diagonal we understand each line of corner-adjacent squares
along a 45 degrees angle to the ground line (hence, there are altogether 30 different
diagonals).

Logic programs are finite sets of first-order formulae (i.e. they are theories) and
have interpretations and models, as known from predicate logic. A (Herbrand-)-
interpretation is thus simply a mapping from ground atoms to the set {t, f} of truth
values. Each (Herbrand-)interpretation I : BP → {t, f} can be interpreted as a sub-
set of BP by identifying it with {A ∈ BP | I(A) = t}, and vice-versa. The set of all
(Herbrand-)interpretations of a logic program P is denoted by IP . In the following,
we will restrict our attention to Herbrand-interpretations.

2.4 Definition Given a (normal) logic program P , we define an operator TP : IP →
IP by setting TP (I) to be the set of all A ∈ BP for which there exists a clause
A← body in ground(P ) with I |= body.

The set IP of all interpretations of P has subset-inclusion as a natural order.

2.5 Proposition Let P be any normal logic program. Then the models of P are
exactly the pre-fixed points of TP , i.e. the models are exactly those I ∈ IP for which
TP (I) ⊆ I holds.

Proof: Let I ∈ IP be a model for P and let A ∈ TP (I). Then there is a clause
A← L1, . . . , Ln, call it C, in ground(P ) with I(L1 ∧ . . .∧Ln) = t. Since I is a model
for P , we also have I(C) = t. Hence I(A) = t, and so A ∈ I, as required.

Conversely, let TP (I) ⊆ I and let A← L1, . . . , Ln be a clause C in ground(P ) with
I(L1 ∧ . . . ∧ Ln) = t. Then A ∈ TP (I) ⊆ I, and hence I(A) = t and in consequence
I(C) = t, as required. �

Exercise 4
Describe all models of the Program Even. Are there countably or uncountably many
models?
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Exercise 5
Compute T n

Even(∅) for n = 0, . . . , 5. (Note: T 0
P (I) = I and T n+1

P (I) = TP (T n
P (I)).)

The program consisting of the single clause q ← p has {q} as a model, but it
is apparent that this is not a good way of assigning a meaning to the program, if
considering it e.g. from a Prolog perspective.

2.1 Least model semantics for definite programs

2.6 Definition ([SHLG94]) A poset (partially ordered set) is a set X equipped
with a partial order, i.e. with a binary relation which is reflexive, antisymmetric, and
transitive. A poset is linearly ordered (or a chain) if each two elements are comparable
in the order. A poset is an ω-cpo, if it has a lest element ⊥ and every linearly ordered
sequence (or ω-chain of elements has a supremum (least upper bound).

Let (X,≤) be an ω-cpo. A function f : X → X is ω-continuous if the following
conditions hold.

(i) f is monotonic, i.e. a ≤ b implies f(a) ≤ f(b) for all a, b ∈ X.

(ii) f preserves suprema of ω-chains, i.e. for any ω-chain (xi)i∈N we have f(sup xi) =
sup f(xi).

Note that monotonicity implies that the image of an ω-chain is again an ω-chain.

Exercise 6
(a) Show that IP is an ω-cpo, if ordered by set-inclusion.

(b) Describe a subset of IP which has minimal elements, but no least element.

(c) Describe a linearly ordered subset of IP which does not have a greatest element.

(d) Does there exist a linearly ordered subset of IP without any minimal element?

Exercise 7
Let IP,3 be the set of all pairs (A, B) with A, B ⊆ BP and A ∩ B = ∅. For
(A, B), (C, D) ∈ IP,3 define (A, B) ≤ (C, D) iff A ⊆ C and B ⊆ D. Show that
(IP,3,≤) is an ω-cpo.

05/11/04

2.7 Proposition ([Llo88]) TP is ω-continuous for definite P .

Proof: We first show that TP is monotonic. Let I,K ∈ IP with I ⊆ K, and let
A ∈ TP (I). Then there exists a clause A ← body in ground(P ) with body ⊆ I ⊆ K,
and hence A ∈ TP (K), as required.

Now let I = {In | n ∈ N} be an ω-chain of interpretations, and let I = sup I =⋃
I. Since the order under consideration is set-inclusion and TP is monotonic, we

immediately have that TP (I) is an ω-chain.
We have TP (K) ⊆ TP (I) for each K ∈ I, and hence

⋃
TP (I) ⊆ TP (I).

It remains to show that TP (I) ⊆
⋃

TP (I). So suppose that A belongs to TP (I).
Then there is a (definite) clause C of the form A← A1, . . . , An in ground(P ) satisfying
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A1, . . . , An ∈ I. Therefore, there exist Ik1 , . . . , Ikn in I with Ai ∈ Iki
for i = 1, . . . , n.

Since I is directed, there is Ik ∈ I with Iki
⊆ Ik for i = 1, . . . , n. Hence, the body

of C is true in Ik, and we obtain that A ∈ TP (Ik) and, hence, that A ∈
⋃

TP (I), as
required. �

Exercise 8
Show that TP is not in general ω-continuous for normal P .

Exercise 9
Give a non-definite program for which TP is ω-continuous.

2.8 Theorem ([Llo88]) TP has a least model by the Scott fixed-point theorem, if
P is definite.

Proof: By the Scott fixed-point theorem (Theorem 2.9 below), TP has a least fixed
point which is also its least pre-fixed point. Since the latter are exactly the models of
P , the proof is complete. �

Kowalski-van Emden showed in [vEK76], that the ground atoms obtainable from
a definite program P by SLD-resolution are exactly those contained in the least fixed
point of TP .

2.9 Theorem [SHLG94, AJ94, GHK+03] Let (X,≤) be an ω-cpo and f : X → X
be an ω-continuous function. Then f has a least fixed point which is also its least
pre-fixed point.

Proof: Define f ↑0 = ⊥ and recursively f ↑(n + 1) = f(f ↑n).
The sequence (f ↑n)n∈N is an ω-chain. It therefore has a supremum f ↑ω = x, say.

By ω-continuity, we have x = f ↑ω = sup{f ↑ (n + 1) | n ∈ N} = f(sup{f ↑n | n ∈
N}) = f(x), and so x is a fixed point of f . If y is a pre-fixed point of f , then ⊥ ≤ y
and, by monotonicity of f , we obtain f ↑1 = f(⊥) ≤ f(y) ≤ y. Inductively, it follows
that f ↑n ≤ y for all n ∈ N, and hence x = f ↑ω ≤ y. So x is the least pre-fixed point
of f , and hence also its least fixed point. �

Exercise 10
For the following program P , describe TP ↑n for all n ∈ N and give its least model.

p(0)←
p(s(X))← p(X)

Exercise 11
Give a naive Prolog-implementation of list membership, and describe the least model
of the program.

Exercise 12
Show that fact is the least fixed point of Fact, by applying Theorem 2.9.

7



Ordinals

2.10 Definition A poset X is well-ordered (or a well-ordering), if each subset of X
has a least element.

Exercise 13
(a) Show that the natural numbers are well-ordered (under the usual order).

(b) Show that the integers are not well-orderd (under the usual order).

(c) Is IP well-ordered under subset-inclusion?

Exercise 14
Show the following.

(a) Every well-ordering is linearly orderd.

(b) No well-ordering contains an infinite strictly descending sequence.

Given two well-orderings (X,≤X) and (Y,≤Y ), we call f : X → Y monotonic
if a ≤X b implies f(a) ≤Y f(b) for all a, b ∈ X. If f is also injective, it is called
an embedding of X into Y . If f is also bijective, it is called an order isomorphism
between X and Y . The two well-orderings X and Y are then called isomorphic.

Exercise 15
Prove that your answers are correct.

(a) Give an order-isomorphism between N and 2N, where 2N ist the set of all even
natural numbers.

(b) Give an embedding of N into IP .

(c) Give an embedding of IP into IP,3.

For two well-orderings (X,≤X) and (Y,≤Y ), we write X ≤ Y if X is isomorphic
to an initial segment of Y , i.e. if X is isomorphic to {y | y ≤Y x} for some x ∈ Y .
We write X < Y if X is isomorphic to a proper initial segment of Y .

2.11 Theorem For any two well-orderings X and Y , exactly one of the following
holds.

(i) X < Y .

(ii) X > Y .

(iii) X and Y are isomorphic.

Proof: We first show the following.
(1) No well-ordering (Z,≤Z) is isomorphic to a proper initial segment of itself.
In order to see this, assume f : I → Z is an isomorphism and I is a proper

initial segment of Z. Then we cannot have f(x) = x for all x ∈ I because then
f would not be surjective. Let x0 be the least element of I such that f(x) 6= x.
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We cannot have f(x0) <Z x0 since then f(f(x0)) = f(x0), so f were not injective.
Hence x0 <Z f(x0). Now let x1 ∈ I such that f(x1) = x0. Then x1 6= x0 (because
f(x0) 6= x0). If x1 <Z x0 then x0 = f(x1) = x1 <Z x0, which is impossible. If
x0 <Z x1, then f(x1) = x0 <Z f(x0) which contradicts f being monotonic. Hence
statement (1) holds.

We will also need the following statement.
(2) If the well-orderings (W,≤W ) and (Z,≤Z) are isomorphic, then the isomor-

phism is unique.
In order to see this, suppose f, g : W → Z are isomorphisms. We show f = g.

Assume this is not the case, and let w0 ∈ W be the≤W -least w such that f(w) 6= g(w),
say, f(w0) <Z g(w0). Let w1 be such that g(w1) = f(w0). Then w1 6= w0. If w1 <W w0

then by minimality of w0 we obtain g(w1) = f(w1) <W f(w0) = g(w1), which is
impossible. If w0 <W w1 then f(w0) <Z g(w0) <Z g(w1) = f(w0), which is also
impossible. So statement (2) holds.

We now return to the proof of the theorem.
For x ∈ X and y ∈ Y , define R(x, y) iff the initial segments {w ∈ X | w ≤X x}

and {v ∈ Y | v ≤Y y} are isomorphic. First note that R(x, y1) and R(x, y2) implies
y1 = y2 by statement (1). So R is a partial function. By symmetry, it is also injective.

We next show that dom(R) is an initial segment of X. Suppose x2 ∈ dom(R), say
R(x2, y2), and let x1 <X x2. Let f be an isomorphism between the initial segments
corresponding to x2 and y2. But then the initial segments corresponding to x1 and
f(x1) are also isomorphic, so R(x1, f(x1)), hence x1 ∈ dom(R). We have also shown
that R is order-preserving.

A similar argument shows that the range of R is an initial segment of Y . Hence
R is an isomorphism from an initial segment of X, say I, to an initial segment of Y ,
say J .

Now consider the following cases. If I = X, but J 6= Y , then case (i) holds. If
I 6= X but J = Y , then case (ii) holds. If I = X and J = Y , then case (iii) holds.
Suppose finally that I 6= X and J 6= Y . If I = {w | w ≤X x} and J = {v | v ≤Y y},
then by definition R(x, y). Thus x ∈ dom(R) = I, a contradiction.

Because of (2), only one of (i), (ii), (iii) holds. �

Exercise 16
Let X be a linearly ordered poset which is not well-ordered. Show that it contains an
infinite strictly descending sequence.

12/11/04

2.12 Definition An ordinal1 is an equivalence class of a well-ordering under isomor-
phism.

2.13 Proposition Every set of ordinals is itself a well-ordering under ≤.

Proof: If α ≤ β are ordinals, then we can assume without loss of generality, that
α ⊆ β. We will do this in the following.

1We’re treating the notion of ordinal very lightly here, meaning that there are some set-theoretic
subtleties which shall not concern us here.
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Let X be a set of ordinals which is not well-ordered, i.e. by Exercise 16 it contains
an infinite descending sequence α0 > α1 > α2 > . . . of ordinals. Then for all i ∈ N
there exists ai ∈ (αi \ αi+1). But then {ai | i ∈ N} ⊆ α0 is a subset of α0 without a
least element, which is impossible. �

It is common practice, to identify any ordinal α with the set of all ordinals β
such that β < α. We will follow this practice in the following. In particular, when we
speak of a mapping f : X → α, where α is an ordinal, we mean in fact a mapping
f : X → {β | β < α}.

Ordinals fall into two classes. A successor ordinal is an ordinal α such that there
is a greatest ordinal β with β < α. In this case, α is called the successor of β and can
be denoted by β + 1. Any ordinal which is not a successor ordinal is called a limit
ordinal.

Exercise 17
Show that any ordinal has a successor.

2.14 Example Natural numbers as ordinals. ω as an ordinal. Etc.

The principle of transfinite induction: Suppose we want to prove that a property
Q holds for all members of an ordinal α. Then it suffices to show that the following
hold.

(i) Q(0) holds.

(ii) For any ordinal β, if Q(α) holds for all ordinals α < β then Q(β) holds as well.

When applying the proof principle of transfinite induction, it is usually convenient
to split part (ii) into two cases, namely whether β is a limit or a successor ordinal.

Mention of the well-ordering principle and some of its implications.

Exercise 18
Prove that the principle of transfinite induction is correct.

2.15 Definition A level mapping for a program P is a mapping l : BP → α, where
α is some ordinal.

2.16 Theorem ([HW02, HW05]) The least model TP ↑ ω for a definite program
P is the unique model M for P satisfying the following condition: there exists a
mapping l : BP → α, for some ordinal α, such that for each A ∈M there is a clause
A← body in ground(P ) with M(body) = t and l(B) < l(A) for each B ∈ body.

Proof: To start with, take M to be the least model TP ↑ω, choose α = ω, and define
l : BP → α by setting l(A) = min{n | A ∈ TP ↑ (n + 1)}, if A ∈ M , and by setting
l(A) = 0, if A 6∈ M . From the fact that ∅ ⊆ TP ↑ 1 ⊆ . . . ⊆ TP ↑n ⊆ . . . ⊆ TP ↑ω =⋃

m TP ↑m, for each n, we see that l is well-defined and that the least model TP ↑ω
for P has the desired properties.

Conversely, if M is a model for P which satisfies the given condition for some
mapping l : BP → α, then it is easy to show, by induction on l(A), that A ∈ M
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implies A ∈ TP ↑(l(A) + 1). This yields that M ⊆ TP ↑ω, and hence that M = TP ↑ω
by minimality of the model TP ↑ω. �

Exercise 19
Show that “ω” is replacable by “N” in Theorem 2.16.

2.2 Stable model semantics for normal programs

2.17 Definition ([ABW88]) An interpretation I for a program P is called sup-
ported if for each A ∈ I there is a clause A← body in ground(P ) with I(body) = t.

2.18 Example Tweety1 from Program 2.3 has supported model M , where M =
{penguin(tweety), bird(bob), bird(tweety), flies(bob)}, as is easily verified. Care-
ful inspection will also convince the reader that M is the unique supported model for
Tweety1.

2.19 Proposition The supported interpretations for a program P are exactly the
post-fixed points of TP . The supported models for P are exactly the fixed points of
TP .

Proof: Let I be a supported interpretation for P and suppose that A ∈ I. Then
there is a clause A ← body in ground(P ) with I(body) = t. But then A ∈ TP (I),
showing that I ⊆ TP (I), as required to see that I is a post-fixed point of TP .

Conversely, assume that I ⊆ TP (I) is a post-fixed point of TP and let A ∈ I. Then
A ∈ TP (I). Therefore, there exists a clause A← body in ground(P ) with I(body) = t,
showing that I is a supported model for P .

Finally, using Proposition 2.5, we obtain that an interpretation for P is a sup-
ported model for P if and only if it is both a pre-fixed point and a post-fixed point
of TP , that is, if and only if it is a fixed point of TP . �

Exercise 20
Consider the program consisting of the single clause p(X) ← ¬p(s(X)). Give all
supported models of the program.

Discussion of relation between supported models and the Clark completion (as in
FLCP).

One of the drawbacks of the supported model semantics is that definite programs
may have more than one supported model.

2.20 Program Let P be the program consisting of the single clause p ← p. Then
both ∅ and {p} are supported models for P .

Why not use least supported models? It may not exist! Consider program with
p← ¬q and q ← ¬p.

Why not use minimal supported models? It’s unintuitive! Consider program with
p← p and q ← ¬p.

This unsatisfactory situation is resolved by the introduction of stable models.
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2.21 Definition ([Fag94]) An interpretation I for a program P is called well-
supported if there exists a mapping l : BP → α, for some ordinal α, with the
property that, for any A ∈ I, there is a clause C in ground(P ) of the form
A← A1, . . . , An,¬B1, . . . ,¬Bk such that the body of C is true in I and l(Ai) < l(A)
for all i = 1, . . . , n. A well-supported model for P is called a stable model for P .

2.22 Theorem The following statements hold.

(i) Every stable model is supported but not vice-versa.

(ii) Every stable model is a minimal model but not vice-versa.

(iii) Every definite program has a unique stable model which is its least model.

Proof: (i) Supportedness of stable models follows immediately from the definition.
The supported model {p} for Program 2.20 is not stable.

(ii) Let P be a program, let M be a stable model for P , and let l be a level
mapping with respect to which M is well-supported. Assume that K is a model for
P with K ⊂ M . Then there exists A ∈ M \K, and we can assume without loss of
generality that A is also such that l(A) is minimal. By the well-supportedness of M ,
there is a clause C of the form A← A1, . . . , An,¬B1, . . . ,¬Bk in ground(P ) such that
for all i = 1, . . . , n and j = 1, . . . , k we have Ai ∈ M , l(A) > l(Ai) and Bj 6∈ M .
Since K ⊂M , we obtain, for all j = 1, . . . k, that Bj 6∈ K, and by minimality of l(A)
we obtain Ai ∈ K for all i = 1, . . . , n. Since K is a model for P and the body of C is
true with respect to K, we conclude that A ∈ K which contradicts the assumption
that A ∈M \K. Hence, M must be a minimal model.

In the opposite direction, Program 2.23 below has {p} as its only model, and
hence this is a minimal model. It is clearly not a stable model, however.

(iii) By Theorem 2.16, we see that the least model is indeed stable. Uniqueness
follows from (ii) and Theorem 2.8 (iii). �

There are programs with unique supported models which are not stable.

2.23 Program The program P consisting of the two clauses

p← p

p← ¬p

has unique supported model {p}, and this model is not stable.

Exercise 21
(a) Show that a unique stable model is always a least model.

(b) If a program has a least model, is this model then always stable?
10/12/04

A characterization of stable models as fixed points of an operator can be given,
and we proceed with this next.
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2.24 Definition ([GL88, GL91]) Let P be a normal logic program and let I ∈ IP .
The Gelfond-Lifschitz transform P/I of P is the set of all clauses A ← A1, . . . , An

for which there exists a clause A ← A1, . . . , An,¬B1, . . . ,¬Bk in ground(P ) with
B1, . . . , Bk 6∈ I.

We note that the Gelfond-Lifschitz transform P/I of a program P is always defi-
nite (as a set of ground clauses) and therefore has a least model TP/I ↑ω by Theorem
2.8. The operator GLP : I 7→ TP/I ↑ω =

⋃
n∈N T n

P/I(∅) is called the Gelfond-Lifschitz

operator 2 associated with P .

A function f on a partially ordered set is called antitonic if x ≤ y implies f(y) ≤
f(x) for all x, y.

2.25 Theorem The following hold.

(i) The Gelfond-Lifschitz operator is antitonic, and in general is not monotonic.

(ii) An interpretation I is a stable model for a program P if and only if it is a fixed
point of GLP , that is, if and only if it satisfies GLP (I) = I.

Proof: Let P be a program and let I, K be interpretations for P with I ⊆ K.
Then P/K ⊆ P/I, and it is a straightforward proof by induction to show that
TP/K ↑n ⊆ TP/I ↑n for all n ∈ N. Hence, GLP (K) = TP/K ↑ω ⊆ TP/I ↑ω = GLP (I),
which shows that GLP is antitonic. To see that it is not generally monotonic, take P
to be Program 2.23. On setting I = ∅, we obtain that P/I is the definite program
consisting of the clauses p ← p and p ←, and GLP (I) = {p}; on setting I = {p}, we
obtain that P/I consists of the single clause p← p, and GLP (I) = ∅. This establishes
(i).

For (ii), we start by supposing that GLP (I) = TP/I ↑ ω = I. Then I is the
least model for P/I, hence is also a model for P , and, by Proposition 2.16, is well-
supported with respect to any level mapping l satisfying l(A) = min{n | A ∈ TP/I ↑
(n + 1)} for each A ∈ I. Conversely, let I be a stable, hence well-supported, model
for P . Then, for every A ∈ I, there is a clause C in ground(P ) of the form A ←
A1, . . . , An,¬B1, . . . ,¬Bk such that the body of C is true in I and satisfying l(Ai) <
l(A) for i = 1, . . . , n. But then, for every A ∈ I, there is a clause A ← A1, . . . , An

in P/I whose body is true in I and such that l(Ai) < l(A) for i = 1, . . . , n. By
Proposition 2.16, this means that I is the least model for P/I, that is, I = TP/I ↑ω =
GL(I). �

Exercise 22
Complete the proof of Theorem 2.25 by spelling out the missing induction argument.

We will now give some examples.

2The Gelfond-Lifschitz operator is named after the authors of [GL88], who introduced it in
defining the stable model semantics.
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2.26 Example Consider again Program Tweety1 and its supported model M as
given in Example 2.18. We show that M is stable. The program Tweety1/M is as
follows.

penguin(tweety)←
bird(bob)←

bird(tweety)← penguin(tweety)

bird(bob)← penguin(bob)

flies(bob)← bird(bob)

The least model for this program turns out to be M , which shows that M is supported.

A strange feature of the supported model semantics is that the addition of clauses
of the form p← p may change the semantics.

2.27 Program (Tweety2) Consider the following program Tweety2.

penguin(tweety)←
bird(bob)←
bird(X)← penguin(X)

flies(X)← bird(X),¬penguin(X)

penguin(bob)← penguin(bob)

Tweety2 results from Tweety1 by adding the clause penguin(bob)← penguin(bob).
Intuitively, this addition should not change the semantics of the program. However,
in addition to the supported model M from Example 2.18, Tweety2 also has

M ′ = {penguin(tweety), penguin(bob), bird(tweety), bird(bob)}
as supported model. Whilst M is also a stable model for Tweety2, M ′ is not.
This can be seen by inspecting the program Tweety2/M ′, as follows, which has
{penguin(tweety), bird(bob), bird(tweety)} 6= M ′ as its least model:

penguin(tweety)←
bird(bob)←

bird(tweety)← penguin(tweety)

bird(bob)← penguin(bob)

penguin(bob)← penguin(bob)

We can also use the stable semantics for modelling choice.

2.28 Program (Tweety3) Consider the program Tweety3, as follows.

eagle(tweety)← ¬penguin(tweety)
penguin(tweety)← ¬eagle(tweety)

bird(X)← eagle(X)

bird(X)← penguin(X)

flies(X)← bird(X),¬penguin(X)

14



This program has the two stable models

{eagle(tweety), bird(tweety), flies(tweety)}

and
{penguin(tweety), bird(tweety)}.

Exercise 23
Compute GLn

Tweety1(∅) and GLn
Tweety3(∅) for all n ∈ N.

Exercise 24
Obtain and install the dlv System (http://www.dbai.tuwien.ac.at/proj/dlv/) Use it to
compute the stable models for the programs Tweety1, Tweety2, and Tweety3.

Exercise 25
Extend Tweety1 by adding ostriches and bats and rules stating “flying things normally
have feathers” and “birds normally are slow walkers”. Encode exceptions to these rules
using negation and test the program with dlv.

Exercise 26
Encode Tweety1 using Reiter’s Default Logic (see ICL). Can you guess how the sta-
ble model semantics and Default Logic relate? (You can also consult [GL91] for an
answer.)

2.29 Definition ([DK89]) A quasi-interpretation3 is a set of clauses of the form
A ← ¬B1, . . . ,¬Bm, where A and Bi are ground atoms for all i = 1, . . . ,m. Given
a normal logic program P and a quasi-interpretation Q, we define T ′

P (Q) to be the
quasi-interpretation consisting of the set of all clauses

A← body1, . . . , bodyn,¬B1, . . . ,¬Bm

for which there exists a clause

A← A1, . . . , An,¬B1, . . . ,¬Bm

in ground(P ) and clauses Ai ← bodyi in Q for all i = 1, . . . , n. We explicitly allow
the cases n = 0 or m = 0 in this definition.

Exercise 27
Show that the set of all quasi-interpretations is an ω-cpo with respect to set-inclusion.

2.30 Proposition For normal programs P , the operator T ′
P is ω-continuous on the

set of all quasi-interpretations.

Proof: We show first that T ′
P is monotonic. So let Q ⊆ R be quasi-interpretations

and let A← body be in T ′
P (Q). If A← body results from the unfolding of some clause

A ← body0 in P with some clauses Bi ← bodyi in Q, then Bi ← bodyi is contained

3This notion is due to [DK89]. We stick to the old terminology, although quasi-interpretations
should really be thought of as, and indeed are, programs with negative body literals only.
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in R for all i by assumption, and by the existence of the clause A ← body0 in P we
obtain A← body in T ′

P (R) by unfolding. If A← body ∈ T ′
P (Q) does not result from

some unfolding, then it is already contained in P , and hence in T ′
P (R).

Now let Q = {Qn | n ∈ N} be an increasing sequence of quasi-interpretations,
and let Q =

⊔
Q =

⋃
Q. Since the order under consideration is set-inclusion and

T ′
P is monotonic, we immediately have that T ′

P (Q) is an increasing sequence in n.
It remains to show that T ′

P (Q) ⊆
⋃

T ′
P (Q) (the other inclusion always holds for

monotonic operators — see the proof of Proposition 2.7). So suppose that A← body

belongs to T ′
P (Q). If A← body does not result from an unfolding, then it is already

contained in P , hence also in T ′
P (Q). Otherwise, A← body results from the unfolding

of some A← body0 in P with some Bi ← bodyi in Q. But then there is n such that all
Bi ← bodyi are contained in Qn, hence A ← body is contained in T ′

P (Qn) ⊆ T ′
P (Q)

as required. �

So we can define the fixpoint completion fix(P ) of P by fix(P ) = T ′
P ↑ω, i.e. fix(P )

is the least fixed point of the operator T ′
P .

2.31 Theorem ([Wen02a]) For any normal program P and (two-valued) interpre-
tation I, we have

GLP (I) = Tfix(P )(I).

Proof: We show first that for every A ∈ GLP (I) there exists a clause in fix(P ) with
head A whose body is true in I, which implies A ∈ Tfix(P )(I). We show this by
induction on the powers of TP/I ; recall that GLP (I) = TP/I ↑ω.

For the base case TP/I ↑0 = ∅ there is nothing to show.
So assume now that for all A ∈ TP/I ↑n there exists a clause in fix(P ) with head A,

whose body is true in I. For A ∈ TP/I ↑(n + 1) there exists a clause A← A1, . . . , An

in P/I such that A1, . . . , An ∈ TP/I ↑n, hence by construction of P/I there is a clause
A ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(P ) with B1, . . . , Bm 6∈ I. By induction
hypothesis we obain that for each i = 1, . . . , n there exists a clause Ai ← bodyi

in fix(P ) with I |= bodyi, hence Ai ∈ Tfix(P )(I). So by definition of T ′
P the clause

A ← body1, . . . bodyn,¬B1, . . . ,¬Bm is contained in fix(P ). From I |= bodyi and
B1, . . . , Bm 6∈ I we obtain A ∈ Tfix(P )(I) as desired.

This closes the induction argument and we obtain GLP (I) ⊆ Tfix(P )(I).
Now conversly, assume that A ∈ Tfix(P )(I). We show that A ∈ GLP (I) by proving

inductively on k that TT ′
P↑k(I) ⊆ GLP (I) for all k ∈ N.

For the base case, we have TT ′
P↑0(I) = ∅ so there is nothing to show.

So assume now that TT ′
P↑k(I) ⊆ GLP (I), and let A ∈ TT ′

P↑(k+1)(I) \ TT ′
P↑k(I). Then

there exists a clause A← body1, . . . , bodyn,¬B1, . . . ,¬Bm in T ′
P ↑(k+1) whose body

is true in I. Thus B1, . . . , Bm 6∈ I and for each i = 1, . . . , n there exists a clause
Ai ← bodyi in T ′

P ↑k with bodyi true in I. So Ai ∈ TT ′
P↑k(I) ⊆ GLP (I). Furthermore,

by definition of T ′
P there exists a clause A← A1, . . . , An,¬B1, . . . ,¬Bm in ground(P ),

and since B1, . . . , Bm 6∈ I we obtain A ← A1, . . . , An ∈ P/I. Since we know that
A1, . . . , An ∈ GLP (I) we obtain A ∈ GLP (I), and hence TT ′

P↑(k+1)(I) ⊆ GLP (I). This
closes the induction argument and we obtain Tfix(P )(I) ⊆ GLP (I). �
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p q ¬p p ∧ q p ∨ q p← q
t t f t t t
t f f f t t
t u f u t t
f t t f t f
f f t f f t
f u t f u f
u t u u t f
u f u f u t
u u u u u t

Table 1: Truth tables for Kleene’s strong three-valued logic.

Exercise 28
Which are the main results on semantics of logic programs and their relations which
we have obtained so far? Collect them all on a single sheet of paper.

3 Three-valued semantics for logic programs

3.1 Fitting semantics

The stable model semantics is more satisfactory than the supported model semantics
in that each definite program has a unique stable model which coincides with its
least model. However, for normal logic programs in general, uniqueness cannot be
guaranteed, as can be seen from the program {p ← ¬q, q ← ¬p} which has two
stable models {p} and {q}. It is desirable to be able to associate with each program a
unique model in some natual way. One way of doing this is by means of three-valued
logic, and we discuss this next. The resulting Kripke-Kleene semantics, herein called
the Fitting semantics, is due to Fitting [Fit85].

We will work in a three-valued logic with the set of truth values T3 = {t,u, f}
for true, undefined and false. We will need the truth tables for negation, disjunction,
conjunction, and implication — they are given in Table 3.1.

A three-valued interpretation I : BP → T3 can be identified with an element of
IP,3 as in Exercise 7, where (A, B) ∈ IP,3 is understood as mapping all elements of
A to t, all elements of B to f , and all others to u. Here, we will use an alternative
notation using signed sets : Instead of (A, B) we write A∪{¬p | p ∈ B}. The ordering
on IP,3 introduced in Exercise 7 will be denoted by ≤k (or sometimes by vk) and
called the knowledge ordering on IP,3. It is the same as subset inclusion on signed
sets.

We will also need another ordering on IP,3 called the truth ordering ≤t (or vt):
We set (A, B) ≤t (C, D) if A ⊆ C and D ⊆ B.

We also call members of IP two-valued or total interpretations and members of
IP,3 three-valued or partial interpretations.
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Exercise 29
In what sense is IP a subset of IP,3?

For convenience, we often write IP instead of IP,3 in this chapter. We will do this
only if it does not cause any confusion. 07/01/05

Given a normal logic program P , we define the following operators4 T ′
P and FP on

IP = IP,3. First, T ′
P (I) is the set of all A ∈ BP for which there is a clause A← body

in ground(P ) with body true in I with respect to Kleene’s strong three-valued logic.
Second, FP (I) is the set of all A ∈ BP such that for all clauses A← body in ground(P )
we have that body is false in I with respect to Kleene’s strong three-valued logic.
Finally, we define

ΦP (I) = T ′
P (I) ∪ ¬FP (I)

for all I ∈ IP . We will call the operator ΦP the Fitting operator for P .
The development of the operator ΦP somewhat parallels that of TP except that

there are two orderings involved, and the following result is analogous to Proposi-
tion 2.5.

3.1 Proposition Let P be a normal logic program. Then the three-valued models
for P are exactly the pre-fixed points of ΦP in the truth ordering vt.

Proof: Suppose that M is a three-valued interpretation for P satisfying ΦP (M) vt

M , and let A ∈ BP be arbitrary. Suppose that ΦP (M)(A) = u. Then we must
have M(A) equal to u or to t. Since no clause A ← body in ground(P ) can have
M(body) = t, otherwise ΦP (M)(A) would be equal to t, we must have M(body)
equal to u or to f for each clause A ← body in ground(P ). But then we get that
A ← body is true in M . The other possible values for ΦP (M) are handled similarly,
and so M is a model for P .

The converse is also handled similarly, and we omit the details. �

Exercise 30
Spell out the missing details of the converse of the previous proof.

3.2 Program Consider the following program P .

p← ¬q

p← ¬r

q ← q

r ← r

Define M as follows: M(p) = f , M(q) = u, M(r) = t. Then M is a three-valued
interpretation for P satisfying ΦP (M) vk M , and yet M is not a model for P .

Exercise 31
Find a program P with a model I ∈ IP,3 which is not a ≤k-pre-fixed point of ΦP .

4The notation T ′
P was already used in the context of Definition 2.29. From here on, we will mean

by T ′
P always the new notion.
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Therefore, neither implication of Proposition 3.1 holds in the case of the knowledge
ordering.

The following fact about ΦP is fundamental.

3.3 Proposition ([Fit85]) Let P be a program. Then ΦP is monotonic on IP,3 in
the knowledge ordering vk.

Proof: Let I, K ∈ IP,3 with I ⊆ K. We show ΦP (I) ⊆ ΦP (K). Let A ∈ ΦP (I) be an
atom. Then A ∈ T ′

P (I). Therefore, there is a ground clause A← body such that body
is true in I. From Table 3.1, each literal in body must be true and therefore must
belong to I. Hence, each literal in body belongs to K since I ⊆ K and is therefore true
in K. Hence body is also true in K and we obtain that A ∈ T ′

P (K) ⊆ ΦP (K). Now
let ¬A ∈ ΦP (I) be a negated atom. Then A ∈ FP (I), and so, for all ground clauses
A ← body, we have that body is false in I. So, given such a clause, from Table 3.1
we see that at least one literal Lj, say, in body is false. Hence, we have ¬Lj ∈ I. But
I ⊆ K and hence ¬Lj ∈ K. Therefore, Lj is also false in K and consequently body

is false in K, and we obtain A ∈ FP (K) and hence ¬A ∈ ΦP (K), as required. �

Exercise 32
Show that ΦP is in general not monotonic with respect to the truth ordering.

3.4 Theorem (Tarski) Let (D,v) denote am ω-cpo, let f : D → D be monotonic
and let x ∈ D be such that x v f(x). Then f has a least fixed point a above x,
which is also the least pre-fixed point of f above x, and there exists a least ordinal α
such that a = fα(x). In particular, f has a least fixed point a which is also its least
pre-fixed point.

Proof: We just sketch the proof.
Let γ be an ordinal whose cardinality exceeds that of D, and form the set {fβ(x) |

β ≤ γ}. By cardinality considerations, there must be ordinals α < β ≤ γ with
fα(x) = fβ(x), and we can assume without loss of generality that α is least with this
property. Since fα(x) v f(fα(x)) v fβ(x) = fα(x), we obtain that fα(x) = f(fα(x)),
and so a = fα(x) is a fixed point of f . Clearly, we have x v a. Furthermore, if b is
any pre-fixed point of f with x v b, then by monotonicity of f and the fact that
f(b) v b we obtain fβ(x) v b for all ordinals β. Hence, a v b and so a is both the
least pre-fixed point and the least fixed point of f above x.

To obtain the final conclusion, we simply set x = ⊥ and note then that x v f(x).
�

Some remarks about the missing details in the proof of Theorem 3.4: Notion of
cardinality for (possibly) infinite sets. |N| = |2N| = |Q| < |R|. |A| < |P(A)| for all sets
A. Continuum hypothesis: Is there some A with |N| < |A| < |R|? The Well-Ordering
Principle. The Axiom of Choice.

Since the operator ΦP is monotonic relative to the ordering vk, it has a least
fixed point by the Knaster-Tarski theorem, Theorem 3.4, and this least fixed point
is an ordinal power ΦP ↑α for some ordinal α. The least fixed point of ΦP is called
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the Kripke-Kleene model or Fitting model for P . It turns out, as we show later in
Program 3.11, that ΦP is not ω-continuous relative to vk, and so Theorem 2.9 is not
generally applicable to ΦP .

Exercise 33
Compute the Fitting models of the programs Tweety1, Tweety3, and Even. Compare
the results with the stable and supported models of the programs.

3.5 Proposition Let P be a program. Then every fixed point M of ΦP is a model
for P with the following properties. (i) If A ∈ BP is such that M(A) = t, then there
exists a clause A← body in ground(P ) with M(body) = t. (ii) If A ∈ BP is such that
for all clauses A← body in ground(P ) we have M(body) = f , then M(A) = f .

Proof: Let A ← body be a clause in ground(P ). If M(body) = t, then M(A) =
ΦP (M)(A) = M(body) = t. If M(A) = f , then ΦP (M)(A) = M(A) = f , hence
M(body) = f . Finally, if M(A) = u, then ΦP (M)(A) = M(A) = u and therefore
M(body) = f or M(body) = u. By definition of the truth value given to ←, we see
that this suffices to show that M is a model for P .

In order to show (i), assume M(A) = t for some A ∈ BP . Then ΦP (M)(A) =
M(A) = t and there is a clause A ← body in ground(P ) with M(body) = t by
definition of ΦP .

To show (ii), let A ∈ BP and assume that for all clauses A← body in ground(P )
we have M(body) = f . Then M(A) = ΦP (M)(A) = f , again by definition of ΦP . �

Proposition 3.5 shows that fixed points of ΦP are three-valued supported models
for P , meaning that they satisfy (i) and (ii) of Proposition 3.5.

Exercise 34
Show that total three-valued supported models are two-valued supported models and
vice-versa.

3.6 Proposition Let P be a program. Then the fixed points of ΦP are exactly the
three-valued supported models for P .

Proof: Certainly, every fixed point of ΦP is a three-valued supported model for P by
Proposition 3.5. Conversely, let M be a three-valued supported model for P , and let
A ∈ BP . If M(A) = t, then there exists a clause A ← body in ground(P ) such that
M(body) = t, hence ΦP (M)(A) = M(body) = t = M(A). If M(A) = f , then for all
clauses A ← body in ground(P ) we have that M(body) = f , since M is a model for
P . Hence, ΦP (M)(A) = M(body) = f = M(A). It follows that M is a fixed point of
ΦP , as required. �

Before discussing further properties of the Fitting model, we give an alternative
characterization of it.

For a program P and a three-valued interpretation I ∈ IP,3, an I-partial level
mapping for P is a partial mapping l : BP → α with domain dom(l) = {A | A ∈
I or ¬A ∈ I}, where α is some (countable) ordinal. We extend every such mapping
to literals by setting l(¬A) = l(A) for all A ∈ dom(l).
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3.7 Definition Let P be a normal logic program, let I be a model for P , and let
l be an I-partial level mapping for P . We say that P satisfies (F) with respect to I
and l if each A ∈ dom(l) satisfies one of the following conditions.

(Fi) A ∈ I and there is a clause A← L1, . . . , Ln in ground(P ) such that Li ∈ I and
l(A) > l(Li) for all i.

(Fii) ¬A ∈ I and for each clause A ← L1, . . . , Ln in ground(P ) there exists i with
¬Li ∈ I and l(A) > l(Li).

If A ∈ dom(l) satisfies (Fi), then we say that A satisfies (Fi) with respect to I and l,
and similarly if A ∈ dom(l) satisfies (Fii).

3.8 Theorem ([HW02, HW05]) Let P be a normal logic program with Fitting
model M . Then, in the knowledge ordering vk, M is the greatest model amongst all
three-valued models I for which there exists an I-partial level mapping l for P such
that P satisfies (F) with respect to I and l.

Proof: Let MP be the Fitting model for P and define the MP -partial level mapping
lP as follows: lP (A) = α, where α is the least ordinal such that A is not undefined
in ΦP ↑ (α + 1). The proof will be established by showing the following facts. (1) P
satisfies (F) with respect to MP and lP . (2) If I is a three-valued model for P and l
is an I-partial level mapping such that P satisfies (F) with respect to I and l, then
I ⊆MP .

(1) Let A ∈ dom(lP ) and suppose that lP (A) = α. We consider the two cases
corresponding to (Fi) and (Fii).

Case (Fi). If A ∈MP , then A ∈ T ′
P (ΦP ↑α). Hence, there exists a clause A← body

in ground(P ) such that body is true in ΦP ↑α. Therefore, for all Li ∈ body, we have
that Li ∈ ΦP ↑α, and hence lP (Li) < α, and also that Li ∈MP for all i. Consequently,
A satisfies (Fi) with respect to MP and lP .

Case (Fii). If ¬A ∈ MP , then A ∈ FP (ΦP ↑α). Hence, for each clause A ← body

in ground(P ), there is a literal L ∈ body with ¬L ∈ ΦP ↑α. But then lP (L) < α and
¬L ∈ MP . Consequently, A satisfies (Fii) with respect to MP and lP , and we have
established that fact (1) holds.

(2) We show via transfinite induction on α = l(A) that, whenever A ∈ I (respec-
tively, ¬A ∈ I), we have A ∈ ΦP ↑ (α + 1) (respectively, ¬A ∈ ΦP ↑ (α + 1)). For the
base case, note that if l(A) = 0, then A ∈ I implies that A occurs as the head of
a fact in ground(P ), hence A ∈ ΦP ↑ 1, and ¬A ∈ I implies that there is no clause
with head A in ground(P ), hence ¬A ∈ ΦP ↑ 1. So assume now that the induction
hypothesis holds for all B ∈ BP with l(B) < α, and that l(A) = α. We consider two
cases.

Case i. If A ∈ I, then it satisfies (Fi) with respect to I and l. Hence, there is a
clause A ← body in ground(P ) such that body ⊆ I and l(K) < α for all K ∈ body.
Hence, body ⊆ MP by the induction hypothesis, and since MP is a model for P we
obtain A ∈MP .

Case ii. If ¬A ∈ I, then A satisfies (Fii) with respect to I and l. Hence, for each
clause A ← body in ground(P ), there is K ∈ body with ¬K ∈ I and l(K) < α. But
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then, by the induction hypothesis, we have ¬K ∈ MP , and consequently for each
clause A ← body in ground(P ) we obtain that body is false in MP . Since MP =
ΦP (MP ) is a fixed point of the ΦP -operator, we obtain ¬A ∈ MP . This establishes
fact (2) and concludes the proof. �

Exercise 35
Display Theorem 3.8 on the examples in Exercise 33.

21/01/05
The following corollary follows immediately as a special case of the previous result.

3.9 Corollary A normal logic program P has a total Fitting model if and only if
there is a total model I for P and a (total) level mapping l for P such that P satisfies
(F) with respect to I and l.

3.10 Example Tweety2 (Program 2.27) has Fitting model

{penguin(tweety), bird(bob), bird(tweety),¬flies(tweety)}.

Thus, we cannot decide whether or not bob is a penguin. Hence, the Fitting semantics
suffers from the same deficiency as the supported model semantics, see our discussion
of Program 2.27.

The Fitting operator is not ω-continuous in general, not even for definite programs,
as shown by the next example.

3.11 Program Consider the program P consisting of the following clauses.

p(s(X))← p(X)

q ← p(X)

Then ΦP ↑n =
{
¬p
(
sk(0)

)
| k < n

}
for all n ∈ N and ΦP ↑ω = {¬p(sn(0)) | n ∈ N}.

However, ΦP ↑ (ω + 1) = {¬q,¬p(sn(0)) | n ∈ N} is the least fixed point of the
operator.

The Fitting operator can be thought of as an approximation to the immediate
consequence operator, in the sense of the following proposition. For I ∈ IP,3 we will
in the following use the notations I+ = BP ∩ I and I− = {A ∈ BP | ¬A ∈ I}.

3.12 Proposition Let P be a program. Then for all I ∈ IP,3 we have that ΦP (I)+ ⊆
TP (I+) ⊆ BP \ΦP (I)−. Furthermore, the Fitting operator maps total interpretations
to total interpretations, and coincides with the immediate consequence operator on
these.

Proof: Let I = I+ ∪ ¬I− be a three-valued interpretation.
Let A ∈ ΦP (I)+. Then there is a clause A← body in ground(P ), where body equals

A1 ∧ · · · ∧An ∧¬B1 ∧ · · · ∧ ¬Bk, say, and is true in the three-valued interpretation I.
Therefore, for all i and j, we have Ai ∈ I+ and Bj ∈ I− so that Ai ∈ I+ and Bj 6∈ I+.
Therefore, body is true in the two-valued interpretation I+, and so A ∈ TP (I+).

22



Conversely, if I is total, then Bj 6∈ I+ means that Bj ∈ I−, and hence whenever
A ∈ TP (I+) we have A ∈ ΦP (I)+, and this deals with the first inclusion.

For the second inclusion, A ∈ ΦP (I)− if and only if for all clauses A ← body

in ground(P ) we have body false in the three-valued interpretation I. But then one
of the literals in body is false and so, using the notation already established for
body, either some Ai ∈ I− or some Bj ∈ I+, that is, either some Ai 6∈ I+ or some
Bj ∈ I+. Therefore, body is also false in the two-valued interpretation I+ leading to
A 6∈ TP (I+). We thus obtain ΦP (I)− ⊆ BP \ TP (I+) so that TP (I+) ⊆ BP \ΦP (I)−.
If I is total, then BP \ ΦP (I)− = ΦP (I)+ = T ′

P (I) = TP (I+). �

From Proposition 3.12, we immediately obtain that total Fitting models are always
supported. They are in fact also stable in general, as we will see later in Section 3.2.
However, if a program has a unique stable model, then it does not necessarily have a
total Fitting model.

3.13 Program The program consisting of the three clauses

p← ¬q

q ← ¬p

p← ¬p

has unique (two-valued) supported model {p}, which is also stable. However, its
(three-valued) Fitting model is everywhere equal to u.

3.2 Well-founded semantics

The well-founded semantics is due to [vGRS91].
Motivate with stratification idea.

3.14 Definition Let P be a normal logic program, let I be a model for P , and let l
be an I-partial level mapping for P . We say that P satisfies (WF) with respect to I
and l if each A ∈ dom(l) satisfies one of the following conditions.

(WFi) A ∈ I and there is a clause A ← L1, . . . , Ln in ground(P ) such that Li ∈ I
and l(A) > l(Li) for all i.

(WFii) ¬A ∈ I and for each clause A ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(P )
one (at least) of the following conditions holds:

(WFiia) There exists i with ¬Ai ∈ I and l(A) ≥ l(Ai).

(WFiib) There exists j with Bj ∈ I and l(A) > l(Bj).

If A ∈ dom(l) satisfies (WFi), then we say that A satisfies (WFi) with respect to I
and l, and similarly if A ∈ dom(l) satisfies (WFii).

We note that conditions (Fi) and (WFi) are identical. However, replacing (WFi)
by a “stratified version” such as the following is not satisfactory.
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p q ¬p p ∧ q p ∨ q p← q
t b f b t t
f b t f b f
b t b b t f
b f b f b t
b b b b b t
b u b f t t
u b u f t t

Table 2: A four-valued logic.

(SFi) A ∈ I and there is a clause A ← A1, . . . , An,¬B1, . . . ,¬Bm in ground(P )
such that Ai,¬Bj ∈ I, l(A) ≥ l(Ai), and l(A) > l(Bj) for all i and j.

Indeed, if we do replace condition (WFi) by condition (SFi), then it is not guaranteed
that, for a given program, there is a greatest model satisfying the desired properties:
consider the program consisting of the two clauses p← p and q ← ¬p, the two (total)
models {p,¬q} and {¬p, q}, and the level mapping l with l(p) = 0 and l(q) = 1.
These models are incomparable, yet in both cases the conditions obtained by replacing
(WFi) by (SFi) in (WF) are satisfied.

So, in the light of Theorem 3.8, Definition 3.14 provides a natural “stratified
version” of the Fitting semantics, Furthermore, the resulting semantics coincides with
another well-known semantics, called the well-founded semantics, which is a very
satisfactory result. To establish this claim, we need to introduce well-founded models,
and this we do next.

For a proper treatment, we will temporarily need a fourth truth value b, called
both. For the truth table we extend Table 3.1 by Table 3.2. Interpretations in this
logic can be written as follows. Let the set of signed sets IP,4 be the set of all subsets
of BP ∪¬BP . We consider IP,4 to be ordered by subset-inclusion. Elements of IP,4 are
called four-valued interpretations.

Given a normal logic program P and I ∈ IP,4, we say that U ⊆ BP is an unfounded
set (of P ) with respect to I if each atom A ∈ U satisfies the following condition: for
each clause A← body in ground(P ) at least one of the following holds.

(Ui) Some (positive or negative) literal in body is false in I.

(Uii) Some (non-negated) atom in body occurs in U .

3.15 Proposition Let P be a program and let I ∈ IP,4. Then there exists a greatest
unfounded set of P with respect to I.

Proof: If (Ui)i∈I is a family of sets each of which is an unfounded set of P with
respect to I, then it is easy to see that

⋃
i∈I Ui is also an unfounded set of P with

respect to I. �

Let P be a program and recall the definition of the operator T ′
P from Section

3.1. It is straightforward to lift T ′
P to an operator on IP,4, namely, by defining T ′

P (I),
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for I ∈ IP,4, to be the set of all A ∈ BP for which there is a clause A ← body in
ground(P ) with body true in I ∈ IP,4. For all I ∈ IP,4, define UP (I) to be the greatest
unfounded set (of P ) with respect to I. Finally, define5

WP (I) = T ′
P (I) ∪ ¬UP (I)

for all I ∈ IP,4.
We note that WP does not restrict to a function on IP,3, which necessitates using

IP,4 instead.

3.16 Example Consider Program 2.20 and I = {p} ∈ IP,3. Then T ′(I) = {p} and
UP (I) = {p}, so WP (I) = {p,¬p} 6∈ IP,3.

3.17 Proposition ([vGRS91]) Let P be a program. Then WP is monotonic on
IP,4.

Proof: Let I, K ∈ IP,4 with I ⊆ K. Then we obtain T ′
P (I) ⊆ T ′

P (K) as in the proof of
Proposition 3.3. So it suffices to show that every unfounded set of P with respect to
I is also an unfounded set of P with respect to K, and this fact follows immediately
from the definition. �

Since WP is monotonic, it has a least fixed point by the Knaster-Tarski theorem,
Theorem 3.4. The least fixed point of WP is called the well-founded model for P ,
giving the well-founded semantics of P .

Exercise 36
Compute the well-founded model for the programs Tweety1, Tweety2, Tweety3, and
Even. Compare with the other semantics of these programs.

We will show shortly that the well-founded model is always in IP,3, but let us
remark first that the operator WP is not order continuous in general nor even ω-
continuous, as the following example shows.

3.18 Program Let P be the following program.

p(0)←
p(s(X))← p(X)

q(s(X))← ¬p(X)

r ← ¬q(X)

Then WP ↑n = {p(sk(0)),¬q(sk(0)) | k < n}, and

WP ↑ω = {p(sn(0)),¬q(sn(0)) | n ∈ N}
6= {p(sn(0)),¬q(sn(0)),¬r | n ∈ N} = WP ↑(ω + 1).

3.19 Theorem ([vGRS91]) Let P be a program. Then WP ↑α ∈ IP,3 for all ordi-
nals α. In particular, the well-founded model for P is in IP,3.

5The operator WP and the well-founded semantics are due to van Gelder, Ross, and Schlipf, see
[vGRS91].
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Proof: We first need some notation. Let M be the least fixed point of WP and for
each atom A ∈M+ let l(A) be the least ordinal β such that A ∈ WP ↑(β + 1).

Now assume that there is an ordinal γ which is least under the condition that
WP ↑ γ 6∈ IP,3. Then γ must be a successor ordinal, so let I = WP ↑ (γ − 1) ∈ IP,3.
Now consider the set U = T ′

P (I) ∩ UP (I), which means that for each A ∈ U and
each clause A ← body in ground(P ) such that body is true in I we have that some
(non-negated) atom B in body occurs in UP (I). We obtain B ∈ UP (I) ∩ I and since
I ⊆ T ′

P (I) we get B ∈ U . Now let A ∈ U be chosen such that it is minimal with
respect to l(A) = β, and notice that necessarily β < γ. Then there exists a clause
A← body in ground(P ) with body being true in WP ↑β ⊆ I, and in particular B ∈ I
and l(B) < l(A) for all (non-negated) atoms B which occur in body. But we have
just shown that then B ∈ U which contradicts minimality of l(A). �
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3.20 Proposition Let P be a program and let I ∈ IP,3. Then ΦP (I) ⊆ WP (I).
Furthermore, the three-valued fixed points of WP are three-valued supported models
for P with respect to Kleene’s strong three-valued logic.

Proof: Let A ∈ FP (I). Then for each clause A ← body in ground(P ), we have that
I(body) = f and so there is a literal L ∈ body with I(L) = f . But then A is in the
greatest unfounded set of P with respect to I, and so A ∈ UP (I). This shows that
ΦP (I) ⊆ WP (I).

The remaining statement is proven in Exercise 37. �

Exercise 37
Complete the proof of Proposition 3.20.

We will now show formally that the well-founded model can be characterized using
Definition 3.146.

3.21 Theorem ([HW02, HW05]) Let P be a normal logic program with well-
founded model M . Then, in the knowledge ordering, M is the greatest model amongst
all models I for which there exists an I-partial level mapping l for P such that P
satisfies (WF) with respect to I and l.

Proof: Let MP be the well-founded model for P and define the MP -partial level
mapping lP as follows: lP (A) = α, where α is the least ordinal such that A is not
undefined in WP ↑(α + 1). The proof will proceed by establishing the following facts:
(1) P satisfies (WF) with respect to MP and lP . (2) If I is a model for P and l is
an I-partial level mapping such that P satisfies (WF) with respect to I and l, then
I ⊆MP .

(1) Let A ∈ dom(lP ) and suppose that lP (A) = α. We consider the two cases
corresponding to (WFi) and (WFii).

Case i. A ∈ MP . Then A ∈ T ′
P (WP ↑α). Hence, there exists a clause A ← body

in ground(P ) such that body is true in WP ↑α. Thus, for all Li ∈ body, we have that

6A different characterization using level mappings, which is nevertheless in the same spirit, can
be found in [LMPS95].
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Li ∈ WP ↑ α. Hence, lP (Li) < α and Li ∈ MP for all i. Consequently, A satisfies
(WFi) with respect to MP and lP .

Case ii. ¬A ∈ MP . Then A ∈ UP (WP ↑α), and so A is contained in the greatest
unfounded set of P with respect to WP ↑ α. Hence, for each clause A ← body in
ground(P ), either (Ui) or (Uii) holds for this clause with respect to WP ↑α and the
unfounded set UP (WP ↑α). If (Ui) holds, then there exists some literal L ∈ body with
¬L ∈ WP ↑α. Hence, lP (L) < α and condition (WFiia) holds relative to MP and lP
if L is an atom, or condition (WFiib) holds relative to MP and lP if L is a negated
atom. On the other hand, if (Uii) holds, then some (non-negated) atom B in body

occurs in UP (WP ↑α). Hence, lP (B) ≤ lP (A) and A satisfies (WFiia) with respect to
MP and lP . Thus, we have established that the statement (1) holds.

(2) We show via transfinite induction on α = l(A) that, whenever A ∈ I (respec-
tively, ¬A ∈ I), then A ∈ WP ↑ (α + 1) (respectively, ¬A ∈ WP ↑ (α + 1)). For the
base case, note that if l(A) = 0, then A ∈ I implies that A occurs as the head of a
fact in ground(P ). Hence, A ∈ WP ↑1. If ¬A ∈ I, then consider the set U of all atoms
B with l(B) = 0 and ¬B ∈ I. We show that U is an unfounded set of P with respect
to WP ↑0, and this suffices since it implies ¬A ∈ WP ↑1 by the fact that A ∈ U . So
let C ∈ U and let C ← body be a clause in ground(P ). Since ¬C ∈ I, and l(C) = 0,
we have that C satisfies (WFiia) with respect to I and l, and so condition (Uii) is
satisfied showing that U is an unfounded set of P with respect to I. Assume now
that the induction hypothesis holds for all B ∈ BP with l(B) < α. We consider two
cases.

Case i. A ∈ I. Then A satisfies (WFi) with respect to I and l. Hence, there is a
clause A ← body in ground(P ) such that body ⊆ I and l(K) < α for all K ∈ body.
Hence, body ⊆ WP ↑α, and we obtain A ∈ T ′

P (WP ↑α), as required.
Case ii. ¬A ∈ I. Consider the set U of all atoms B with l(B) = α and ¬B ∈ I. We

show that U is an unfounded set of P with respect to WP ↑α, and this suffices since
it implies ¬A ∈ WP ↑(α +1) by the fact that A ∈ U . So let C ∈ U and let C ← body

be a clause in ground(P ). Since ¬C ∈ I, we have that C satisfies (WFii) with respect
to I and l. If there is a literal L ∈ body with ¬L ∈ I and l(L) < l(C), then by the
induction hypothesis we obtain ¬L ∈ WP ↑ α, so condition (Ui) is satisfied for the
clause C ← body with respect to WP ↑α and U . In the remaining case, we have that
C satisfies condition (WFiia), and there exists an atom B ∈ body with ¬B ∈ I and
l(B) = l(C). Hence, B ∈ U showing that condition (Uii) is satisfied for the clause
C ← body with respect to WP ↑ α and U . Hence, U is an unfounded set of P with
respect to WP ↑α. �

Exercise 38
Illustrate Theorem 3.21 on the examples Tweety1, Tweety2, Tweety3, and Even.

As a special case, we immediately obtain the following corollary.

3.22 Corollary A normal logic program P has a total well-founded model if and
only if there is a total model I for P and a (total) level mapping l such that P satisfies
(WF) with respect to I and l.
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An alternative way of characterizing the well-founded semantics is via the Gelfond-
Lifschitz operator from Section 2.2. Recall from Theorem 2.25 that the Gelfond-
Lifschitz operator is antitonic. In particular, this means that, for any program P , the
operator GL2

P , obtained by applying GLP twice, is monotonic, and by the Knaster-
Tarski theorem has a least fixed point, LP . Note further that IP,2 is a complete lattice
in the dual of the truth ordering on IP,2. So, on applying the Knaster-Tarski theorem
again, we also obtain that GL2

P has a greatest fixed point, GP . Since LP ⊆ GP , we
obtain that LP ∪ ¬(BP \GP ) is a three-valued interpretation for P , and is in fact a
model for P , as we show next, called the alternating fixed point model for P .

We are going to show that the alternating fixed point model coincides with the
well-founded model. Let us first introduce some temporary notation, where P is an
arbitrary program.

L0 = ∅ G0 = BP

Lα+1 = GLP (Gα) Gα+1 = GLP (Lα) for any ordinal α

Lα =
⋃
β<α

Lβ Gα =
⋂
β<α

Gβ for limit ordinal α.

Since ∅ ⊆ BP , we obtain L0 ⊆ L1 ⊆ G1 ⊆ G0 and, by transfinite induction, it can
easily be shown that Lα ⊆ Lβ ⊆ Gβ ⊆ Gα whenever α ≤ β.

3.23 Theorem ([vG89]) Let P be a program. Then the following hold.

(a) LP = GLP (GP ) and GP = GLP (LP ).

(b) For every stable model S for P , we have LP ⊆ S ⊆ GP .

(c) M = LP ∪ ¬(BP \GP ) is the well-founded model for P .

Proof: The proof is due to [HW05].
(a) We obtain GL2

P (GLP (LP )) = GLP (GL2
P (LP )) = GLP (LP ), so GLP (LP ) is a fixed

point of GL2
P , and hence LP ⊆ GLP (LP ) ⊆ GP . Similarly, LP ⊆ GLP (GP ) ⊆ GP . Since

LP ⊆ GP , we get from the antitonicity of GLP that LP ⊆ GLP (GP ) ⊆ GLP (LP ) ⊆ GP .
Similarly, since GLP (LP ) ⊆ GP , we obtain GLP (GP ) ⊆ GL2

P (LP ) = LP ⊆ GLP (GP ),
so GLP (GP ) = LP , and hence GP = GL2

P (GP ) = GLP (LP ).
(b) It suffices to note that S is a fixed point of GLP , by Theorem 2.25, and hence

is a fixed point of GL2
P .

(c) We prove this statement by applying Theorem 3.21. First, we define an M -
partial level mapping l. For convenience, we will take as image set of l, pairs (α, n)
of ordinals, where n ≤ ω, with the lexicographic ordering. This can be done without
loss of generality because any set of pairs of ordinals, lexicographically ordered, is
certainly well-ordered and therefore order-isomorphic to an ordinal. For A ∈ LP , let
l(A) be the pair (α, n), where α is the least ordinal such that A ∈ Lα+1, and n is
the least ordinal such that A ∈ TP/Gα ↑ (n + 1). For B 6∈ GP , let l(B) be the pair
(β, ω), where β is the least ordinal such that B 6∈ Gβ+1. We show next by transfinite
induction that P satisfies (WF) with respect to M and l.
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Let A ∈ L1 = TP/BP
↑ω. Since P/BP consists of exactly all clauses from ground(P )

which contain no negation, we have that A is contained in the least two-valued model
for a definite subprogram of P , namely, P/BP , and (WFi) is satisfied, by Theorem
2.8. Now let ¬B ∈ ¬(BP \GP ) be such that B ∈ (BP \G1) = BP \TP/∅ ↑ω. Since P/∅
contains all clauses from ground(P ) with all negative literals removed, we obtain that
each clause in ground(P ) with head B must contain a positive body literal C 6∈ G1,
which, by definition of l, must have the same level as B, hence (WFiia) is satisfied.

Assume now that, for some ordinal α, we have shown that A satisfies (WF) with
respect to M and l for all n ≤ ω and all A ∈ BP with l(A) ≤ (α, n).

Let A ∈ Lα+1 \Lα = TP/Gα ↑ω \Lα. Then A ∈ TP/Gα ↑n\Lα for some n ∈ N; note
that all (negative) literals which were removed by the Gelfond-Lifschitz transforma-
tion from clauses with head A have level less than (α, 0). Then the assertion that A
satisfies (WF) with respect to M and l follows again by Theorem 2.8.

Let A ∈ (BP \Gα+1)∩Gα. Then A 6∈ TP/Lα ↑ω. Let A← A1, . . . , Ak,¬B1, . . . ,¬Bm

be a clause in ground(P ). If Bj ∈ Lα for some j, then l(A) > l(Bj). Otherwise,
since A 6∈ TP/Lα ↑ ω, we have that there exists Ai with Ai 6∈ TP/Lα ↑ ω, and hence
l(A) ≥ l(Ai), and this suffices.

This finishes the proof that P satisfies (WF) with respect to M and l. It therefore
only remains to show that M is greatest with this property.

So assume that M1 6= M is the greatest model such that P satisfies (WF) with
respect to M1 and some M1-partial level mapping l1.

Assume L ∈ M1 \M and, without loss of generality, let the literal L be chosen
such that l1(L) is minimal. We consider the following two cases.

(Case i) If L = A is an atom, then there exists a clause A ← body in ground(P )
such that l1(L) < l1(A) for all literals L in body, and such that body is true in M1.
Hence, body is true in M and A ← body transforms to a clause A ← A1, . . . , An in
P/GP with A1, . . . , An ∈ LP = TP/GP

↑ ω. But this implies A ∈ M , contradicting
A ∈M1 \M .

(Case ii) If L = ¬A ∈ M1 \M is a negated atom, then ¬A ∈ M1 and A ∈ GP =
TP/LP

↑ ω, so A ∈ TP/LP
↑ n for some n ∈ N. We show by induction on n that this

leads to a contradiction, to finish the proof.
If A ∈ TP/LP

↑1, then there is a unit clause A← in P/LP , and any corresponding
clause A ← ¬B1, . . . ,¬Bk in ground(P ) satisfies B1, . . . , Bk 6∈ LP . Since ¬A ∈ M1,
we also obtain by Theorem 3.21 that there is i ∈ {1, . . . , k} such that Bi ∈ M1 and
l1(Bi) < l1(A). By minimality of l1(A), we obtain Bi ∈M , and hence Bi ∈ LP , which
contradicts Bi 6∈ LP .

Now assume that there is no ¬B ∈M1 \M with B ∈ TP/LP
↑k for any k < n + 1,

and let ¬A ∈M1\M with A ∈ TP/LP
↑(n+1). Then there is a clause A← A1, . . . , Am

in P/LP with A1, . . . , Am ∈ TP/LP
↑n ⊆ GP , and we note that we cannot have ¬Ai ∈

M1 \M for any i ∈ {1, . . . ,m}, by our current induction hypothesis. Furthermore,
it is also impossible for ¬Ai to belong to M for any i, otherwise we would have
Ai ∈ BP \GP . Thus, we conclude that we cannot have ¬Ai ∈M1 for any i. Moreover,
there is a corresponding clause A ← A1, . . . , Am,¬B1, . . . ,¬Bm1 in ground(P ) with
B1, . . . , Bm1 6∈ LP . Hence, by Theorem 3.21, we know that there is i ∈ {1, . . . ,m1}
such that Bi ∈ M1 and l1(Bi) < l1(A). By minimality of l1(A), we conclude that
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Bi ∈M , so that Bi ∈ LP , and this contradicts Bi 6∈ LP .
�

Exercise 39
Compute the iterates of the Gelfond-Lifschitz operator from ∅ and BP for the programs
Tweety1, Tweety2, Tweety3, and Even.

It follows from Theorem 3.23 (b) that total well-founded models are unique stable
models. The converse, however, does not hold. Indeed, Program 3.13 has well-founded
model ∅, as can easily be seen by noting that GLP (∅) = BP and GLP (BP ) = ∅.

3.24 Theorem Let P be a program with total Fitting model. Then P has a total
well-founded model. Moreover, P also has a unique stable and a unique supported
model. Furthermore, all these models coincide.

Proof: By Proposition 3.20, P has a total well-founded model which coincides with
the Fitting model. By Theorem 3.23 (b), P has a unique stable model and this
coincides with the well-founded model by (c). Finally, by Proposition 3.12, P has a
unique supported model which coincides with its Fitting model. �

Exercise 40
Redo Exercise 28, taking all material into account.

4 Outlook
04/02/05

Timeline

1965 Robinson Resolution [Rob65]
1974 Kowalski SLD-Resolution [Kow74]

ca. 1975 Colmerauer, Prolog [CR93]
1978 McCarthy Circumscription [McC77, McC80]
1980 Reiter Default Logic [Rei80]
1984 Moore Autoepistemic Logic [Moo84, Moo85]
1985 Fitting Semantics [Fit85]

1988–91 Stable and well-founded semantics [GL88, GL91, vGRS91]
ca. 1993 XSB Prolog [CW93, CSW93]
ca. 1997 ASP systems dlv, smodels [ELM+97, SNS02]

currently Syntactic extensions (see below)
currently Applications (see below)

Some syntactic extensions

• two negations (default and classical) [GL91]

• paraconsistency [Ari02]

• disjunctive heads/databases [GL91, LMR92, Min97, MS02]
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• preferences [BE99]

• updates of logic programs [ALP+98, ABLP02, Lei03]

• etc.

Some applications

• NMR is a standard paradigm in KR&R and in AI

• Reasoning about action and change [Lif99, Lif02]

• Semantic Web [BH95, ELST04]

• etc.

Own interests

• Neural-symbolic integration: How to represent (or extract) logic programs under
different semantics by (from) artificial neural networks [HHS04, BH04].

• Semantic Web applications.

• Decidability questions.

• Uniform approach using level mappings. E.g. disjunctive cases unclear in par-
ticular for well-founded semantcs.

• How to control iterations of TP (metrics, topology) [Sed95, Hit01, HS03].

• etc.

Some things we have learned

• The foundations of NMR with LPs.

• The most important semantics of LPs.

• Relationships between these semantics.

• The prominent role of negation in NMR.

• Standard construction methods for semantics of LPs.

• Ordinals and transfinite induction.

• How much effort and formal considerations a correct mathematical treatment
requires.

• etc.
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